This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
/
Copy pathtrain_multi.py
168 lines (138 loc) · 5.71 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import multiprocessing
import numpy as np
import chainer
from chainer.optimizer_hooks import WeightDecay
from chainer import serializers
from chainer import training
from chainer.training import extensions
from chainer.training import triggers
import chainermn
from chainercv.chainer_experimental.datasets.sliceable \
import ConcatenatedDataset
from chainercv.chainer_experimental.datasets.sliceable import TransformDataset
from chainercv.datasets import voc_bbox_label_names
from chainercv.datasets import VOCBboxDataset
from chainercv.extensions import DetectionVOCEvaluator
from chainercv.links.model.ssd import GradientScaling
from chainercv.links.model.ssd import multibox_loss
from chainercv.links import SSD300
from chainercv.links import SSD512
from train import Transform
# https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator
import cv2
cv2.setNumThreads(0)
class MultiboxTrainChain(chainer.Chain):
def __init__(self, model, alpha=1, k=3, comm=None):
super(MultiboxTrainChain, self).__init__()
with self.init_scope():
self.model = model
self.alpha = alpha
self.k = k
self.comm = comm
def forward(self, imgs, gt_mb_locs, gt_mb_labels):
mb_locs, mb_confs = self.model(imgs)
loc_loss, conf_loss = multibox_loss(
mb_locs, mb_confs, gt_mb_locs, gt_mb_labels, self.k, self.comm)
loss = loc_loss * self.alpha + conf_loss
chainer.reporter.report(
{'loss': loss, 'loss/loc': loc_loss, 'loss/conf': conf_loss},
self)
return loss
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model', choices=('ssd300', 'ssd512'), default='ssd300')
parser.add_argument('--batchsize', type=int, default=32)
parser.add_argument('--test-batchsize', type=int, default=16)
parser.add_argument('--iteration', type=int, default=120000)
parser.add_argument('--step', type=int, nargs='*', default=[80000, 100000])
parser.add_argument('--out', default='result')
parser.add_argument('--resume')
args = parser.parse_args()
# https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator
if hasattr(multiprocessing, 'set_start_method'):
multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()
comm = chainermn.create_communicator('pure_nccl')
device = comm.intra_rank
if args.model == 'ssd300':
model = SSD300(
n_fg_class=len(voc_bbox_label_names),
pretrained_model='imagenet')
elif args.model == 'ssd512':
model = SSD512(
n_fg_class=len(voc_bbox_label_names),
pretrained_model='imagenet')
model.use_preset('evaluate')
train_chain = MultiboxTrainChain(model, comm=comm)
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
train = TransformDataset(
ConcatenatedDataset(
VOCBboxDataset(year='2007', split='trainval'),
VOCBboxDataset(year='2012', split='trainval')
),
('img', 'mb_loc', 'mb_label'),
Transform(model.coder, model.insize, model.mean))
if comm.rank == 0:
indices = np.arange(len(train))
else:
indices = None
indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
train = train.slice[indices]
train_iter = chainer.iterators.MultiprocessIterator(
train, args.batchsize // comm.size, n_processes=2)
if comm.rank == 0:
test = VOCBboxDataset(
year='2007', split='test',
use_difficult=True, return_difficult=True)
test_iter = chainer.iterators.SerialIterator(
test, args.test_batchsize, repeat=False, shuffle=False)
# initial lr is set to 1e-3 by ExponentialShift
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.MomentumSGD(), comm)
optimizer.setup(train_chain)
for param in train_chain.params():
if param.name == 'b':
param.update_rule.add_hook(GradientScaling(2))
else:
param.update_rule.add_hook(WeightDecay(0.0005))
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=device)
trainer = training.Trainer(
updater, (args.iteration, 'iteration'), args.out)
trainer.extend(
extensions.ExponentialShift('lr', 0.1, init=1e-3),
trigger=triggers.ManualScheduleTrigger(args.step, 'iteration'))
if comm.rank == 0:
trainer.extend(
DetectionVOCEvaluator(
test_iter, model, use_07_metric=True,
label_names=voc_bbox_label_names),
trigger=triggers.ManualScheduleTrigger(
args.step + [args.iteration], 'iteration'))
log_interval = 10, 'iteration'
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(extensions.PrintReport(
['epoch', 'iteration', 'lr',
'main/loss', 'main/loss/loc', 'main/loss/conf',
'validation/main/map']),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(
extensions.snapshot(),
trigger=triggers.ManualScheduleTrigger(
args.step + [args.iteration], 'iteration'))
trainer.extend(
extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'),
trigger=(args.iteration, 'iteration'))
if args.resume:
serializers.load_npz(args.resume, trainer)
trainer.run()
if __name__ == '__main__':
main()