-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassificationModel.java
325 lines (284 loc) · 11.2 KB
/
ClassificationModel.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
package activeLearningWithRationales;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ThreadLocalRandom;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;
import cc.mallet.classify.Classification;
import cc.mallet.classify.NaiveBayesTrainer;
import cc.mallet.pipe.CharSequence2TokenSequence;
import cc.mallet.pipe.FeatureSequence2FeatureVector;
import cc.mallet.pipe.Input2CharSequence;
import cc.mallet.pipe.Pipe;
import cc.mallet.pipe.SerialPipes;
import cc.mallet.pipe.Target2Label;
import cc.mallet.pipe.TokenSequence2FeatureSequence;
import cc.mallet.pipe.TokenSequenceLowercase;
import cc.mallet.pipe.TokenSequenceRemoveStopwords;
import cc.mallet.pipe.iterator.CsvIterator;
import cc.mallet.types.Alphabet;
import cc.mallet.types.FeatureCounter;
import cc.mallet.types.FeatureVector;
import cc.mallet.types.Instance;
import cc.mallet.types.InstanceList;
import cc.mallet.types.Labeling;
import cc.mallet.types.Multinomial;
public class ClassificationModel {
private static final Logger LOGGER = Logger.getLogger(ClassificationModel.class.getName());
private static final String NEGATIVE_WORDS_TXT = "negative_words.txt";
private static final String POSITIVE_WORDS_TXT = "positive_words.txt";
public static final String NEGATIVE = "NEGATIVE";
public static final String POSITIVE = "POSITIVE";
static int budget = 100;
static int bootstrap = 10;
static double rFactor = 1;
static double oFactor = 0.1;
static NaiveBayesTrainer trainer = new NaiveBayesTrainer();
static Pipe pipe;
public ClassificationModel() {
pipe = buildPipe();
}
// Reference: {@link: http://mallet.cs.umass.edu/import-devel.php}
@SuppressWarnings({ "rawtypes", "unchecked" })
public Pipe buildPipe() {
ArrayList pipeList = new ArrayList();
pipeList.add(new Input2CharSequence("UTF-8"));
Pattern tokenPattern = Pattern.compile("[\\p{L}\\p{N}_]+");
pipeList.add(new CharSequence2TokenSequence(tokenPattern));
pipeList.add(new TokenSequenceLowercase());
pipeList.add(new TokenSequenceRemoveStopwords(false, false));
pipeList.add(new TokenSequence2FeatureSequence());
pipeList.add(new Target2Label());
pipeList.add(new FeatureSequence2FeatureVector());
// pipeList.add(new PrintInputAndTarget());
return new SerialPipes(pipeList);
}
public InstanceList readDirectory(String filePath) {
CsvIterator trainReader = null;
try {
trainReader = new CsvIterator(new FileReader(filePath), "(\\w+)\\s+(\\w+)\\s+(.*)", 3, 2, 1);
} catch (FileNotFoundException e) {
e.printStackTrace();
}
InstanceList instances = new InstanceList(pipe);
instances.addThruPipe(trainReader);
return instances;
}
// Reference for sentiment words lists: {@link:
// https://www.cs.uic.edu/~liub/publications/www05-p536.pdf}
public static void main(String[] args) throws IOException {
if (args.length < 2) {
LOGGER.log(Level.SEVERE,
"Not enough arguments passed; Should run the jar as \"java -jar run_model.jar train_file_path test_file_path\"");
}
ClassificationModel importer = new ClassificationModel();
LOGGER.info("loading train and test data");
InstanceList instances = importer.readDirectory(args[0]);
InstanceList testInstances = importer.readDirectory(args[1]);
LOGGER.info("Setting tf-idf values");
setTfIdf(instances);
setTfIdf(testInstances);
Alphabet completeAlphabet = instances.getAlphabet();
Alphabet targetAlphabet = instances.getTargetAlphabet();
// ClassLoader classLoader = ClassificationModel.class.getClassLoader();
Map<Integer, String> positiveWordsMap = getSentimentWordList(completeAlphabet, POSITIVE_WORDS_TXT);
Map<Integer, String> negativeWordsMap = getSentimentWordList(completeAlphabet, NEGATIVE_WORDS_TXT);
// rFactor
setRFactor(instances, positiveWordsMap, negativeWordsMap);
setRFactor(testInstances, positiveWordsMap, negativeWordsMap);
LOGGER.info("Running initial train");
// train bootstrap
InstanceList trainingBootstrap = new InstanceList(completeAlphabet, targetAlphabet);
int posTrainingSamples = 0;
int negTrainingSamples = 0;
List<Integer> randomIndices = new ArrayList<>();
for (int i = 0; i < 50; i++) {
randomIndices.add(ThreadLocalRandom.current().nextInt(0, instances.size() + 1));
}
for (int randomInstanceIndex : randomIndices) {
Instance currInstance = null;
if (randomInstanceIndex < instances.size()) {
currInstance = instances.get(randomInstanceIndex);
} else {
currInstance = instances.get(instances.size() - 1);
}
String curr_target = (String) currInstance.getTarget().toString();
if (curr_target.equalsIgnoreCase(POSITIVE) && posTrainingSamples < bootstrap / 2) {
instances.remove(currInstance);
trainingBootstrap.add(currInstance);
posTrainingSamples++;
} else if (curr_target.equalsIgnoreCase(NEGATIVE) && negTrainingSamples < bootstrap / 2) {
instances.remove(currInstance);
trainingBootstrap.add(currInstance);
negTrainingSamples++;
}
}
Multinomial.Estimator featureEstimator = new Multinomial.LaplaceEstimator();
Multinomial.Estimator priorEstimator = new Multinomial.LaplaceEstimator();
trainer.setFeatureMultinomialEstimator(featureEstimator);
trainer.setPriorMultinomialEstimator(priorEstimator);
trainer.train(trainingBootstrap);
LOGGER.info("Accuracy on test data with the 10 initial training samples is : "
+ trainer.getClassifier().getAccuracy(testInstances));
int initialBudget = budget;
LOGGER.info("Training using a Budget of " + budget);
while (budget > 0) {
ArrayList<Classification> classify_rest = run_classifier_on_rest(instances);
classify_rest = new ArrayList<Classification>(classify_rest.subList(0, 20));
InstanceList uncertainSampleList = new InstanceList(completeAlphabet, targetAlphabet);
for (Classification each_classification : classify_rest) {
Boolean containsPos = Boolean.FALSE;
Boolean containsNeg = Boolean.FALSE;
Instance currInstance = each_classification.getInstance();
FeatureVector currData = (FeatureVector) currInstance.getData();
int[] indicesList = currData.getIndices();
for (int eachIndex : indicesList) {
if (positiveWordsMap.containsKey(eachIndex)) {
containsPos = Boolean.TRUE;
} else if (negativeWordsMap.containsKey(eachIndex)) {
containsNeg = Boolean.TRUE;
}
}
if (containsPos && containsNeg) {
uncertainSampleList.add(currInstance);
instances.remove(currInstance);
}
if (uncertainSampleList.size() == 5) {
break;
}
}
while (uncertainSampleList.size() < 5) {
LOGGER.info("Not enough pos+neg (type 3) word cases!");
for (Classification each_classification : classify_rest) {
Instance currInstance = each_classification.getInstance();
if (!uncertainSampleList.contains(currInstance)) {
uncertainSampleList.add(currInstance);
instances.remove(currInstance);
}
}
}
uncertainSampleList.setPipe(trainingBootstrap.getPipe());
trainer.trainIncremental(uncertainSampleList);
budget = budget - 5;
LOGGER.info("Accuracy on test data with " + (initialBudget - budget + 10) + " training samples is :"
+ trainer.getClassifier().getAccuracy(testInstances));
}
}
/**
* @param instances
* @param positiveWordsMap
* @param negativeWordsMap
*/
protected static void setRFactor(InstanceList instances, Map<Integer, String> positiveWordsMap,
Map<Integer, String> negativeWordsMap) {
for (int i = 0; i < instances.size(); i++) {
Instance currInstance = instances.get(i);
FeatureVector currData = (FeatureVector) currInstance.getData();
int[] indicesList = currData.getIndices();
String curr_target = (String) currInstance.getTarget().toString();
if (curr_target.equalsIgnoreCase(POSITIVE)) {
Boolean rFactorSingleWord = Boolean.FALSE;
for (int eachIndex : indicesList) {
double curr_value = currData.value(eachIndex);
if (positiveWordsMap.containsKey(eachIndex) && !rFactorSingleWord) {
currData.setValue(eachIndex, curr_value * rFactor);
rFactorSingleWord = Boolean.TRUE;
} else {
currData.setValue(eachIndex, curr_value * oFactor);
}
}
currInstance.unLock();
instances.get(i).setData(currData);
} else if (curr_target.equalsIgnoreCase(NEGATIVE)) {
Boolean rFactorSingleWord = Boolean.FALSE;
for (int eachIndex : indicesList) {
double curr_value = currData.value(eachIndex);
if (negativeWordsMap.containsKey(eachIndex) && !rFactorSingleWord) {
currData.setValue(eachIndex, curr_value * rFactor);
rFactorSingleWord = Boolean.TRUE;
} else {
currData.setValue(eachIndex, curr_value * oFactor);
}
}
currInstance.unLock();
instances.get(i).setData(currData);
}
}
}
/**
* @param instances
*/
protected static void setTfIdf(InstanceList instances) {
FeatureCounter counter = new FeatureCounter(instances.getDataAlphabet());
for (int i = 0; i < instances.size(); i++) {
Instance instance = instances.get(i);
FeatureVector currData = (FeatureVector) instance.getData();
int[] curr_indices = currData.getIndices();
for (int ind : curr_indices) {
counter.increment(ind);
}
}
int numDocs = instances.size();
for (int i = 0; i < instances.size(); i++) {
Instance instance = instances.get(i);
FeatureVector currData = (FeatureVector) instance.getData();
int[] curr_indices = currData.getIndices();
for (int ind : curr_indices) {
double curr_value = currData.value(ind);
currData.setValue(ind, curr_value * Math.log(numDocs / counter.get(ind)));
}
instances.get(i).unLock();
instances.get(i).setData(currData);
}
}
/**
* @param completeAlphabet
* @return
*/
protected static Map<Integer, String> getSentimentWordList(Alphabet completeAlphabet, String resourceFile) {
Map<Integer, String> wordList = new HashMap<>();
InputStream in = ClassificationModel.class.getResourceAsStream("/" + resourceFile);
BufferedReader reader = new BufferedReader(new InputStreamReader(in));
String line = null;
try {
while ((line = reader.readLine()) != null) {
wordList.put(completeAlphabet.lookupIndex(line.toLowerCase()), line);
}
} catch (IOException e) {
LOGGER.log(Level.SEVERE, "Error reading resource file " + resourceFile);
e.printStackTrace();
}
return wordList;
}
private static ArrayList<Classification> run_classifier_on_rest(InstanceList instances) {
ArrayList<Classification> classify_rest = trainer.getClassifier().classify(instances);
Collections.sort(classify_rest, new Comparator<Classification>() {
@Override
public int compare(Classification o1, Classification o2) {
Labeling label1 = o1.getLabeling();
Labeling label2 = o2.getLabeling();
double dist1 = Math.abs(label1.value(0) - 0.5) + Math.abs(label1.value(1) - 0.5);
double dist2 = Math.abs(label2.value(0) - 0.5) + Math.abs(label2.value(1) - 0.5);
if (dist1 < dist2) {
return -1;
} else if (dist2 < dist1) {
return 1;
} else {
return 0;
}
}
});
return classify_rest;
}
}