-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchnSegment.py
47 lines (37 loc) · 1.29 KB
/
chnSegment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# coding:utf-8
from collections import Counter
from os import path
import jieba
# 写入excel
import xlwt
# 引入正则表达式提取中文
import re
book = xlwt.Workbook()
sheet = book.add_sheet('sheet1', cell_overwrite_ok=True)
jieba.load_userdict(path.join(path.dirname(__file__), 'userdict//userdict.txt')) # 导入用户自定义词典
def remove(text):
pattern = re.compile("[^\u4e00-\u9fa5]") # 模式匹配所有中文字符
return re.sub(pattern, '', text)
def word_segment(text):
# 先去除标点
text = remove(text)
'''
通过jieba进行分词并通过空格分隔,返回分词后的结果
'''
# 计算每个词出现的频率,并存入txt文件
jieba_word = jieba.cut(text, cut_all=False) # cut_all是分词模式,True是全模式,False是精准模式,默认False
data = []
for word in jieba_word:
data.append(word)
dataDict = Counter(data)
i = 0
for k, v in dataDict.items():
sheet.write(i, 0, k)
sheet.write(i, 1, v)
i += 1
# 保存excel
book.save('./result/result.xls')
# 返回分词后的结果
jieba_word = jieba.cut(text, cut_all=False) # cut_all是分词模式,True是全模式,False是精准模式,默认False
seg_list = ' '.join(jieba_word)
return seg_list