Skip to content

Commit 4ee557e

Browse files
v0.5.2: improved the calculation of the shortest paths and displays KEGG ids in model statistics
1 parent c4c322f commit 4ee557e

File tree

4 files changed

+310
-281
lines changed

4 files changed

+310
-281
lines changed

.gitignore

+1
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
.DS_Store
12
*.pyc
23
*.history
34

README.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313

1414
<p align="justify">
1515
MetEvolSim is a Python package providing numerical tools to simulate the long-term evolution of metabolic abundances in a metabolic network.
16-
MetEvolSim takes as an input any <a href="http://sbml.org/Main_Page">SBML</a> metabolic network model, as soon as the kinetic model is fully specified, and a stable steady-state exists. Steady-state concentrations are computed thanks to <a href="http://copasi.org/">Copasi</a> software. SBML model manipulations are done thanks to the Python package <a href="http://sbml.org/Software/libSBML">libSBML</a>.
16+
MetEvolSim takes as an input any <a href="http://sbml.org/Main_Page">SBML</a> metabolic network model, as soon as the kinetic model is fully specified, and a stable steady-state exists. Steady-state concentrations are computed thanks to <a href="http://copasi.org/">Copasi</a> software.
1717
</p>
1818

1919
<p align="justify">
@@ -35,8 +35,8 @@ MetEvolSim is being developed by <a href="https://github.com/charlesrocabert">Ch
3535
## Dependencies <a name="dependencies"></a>
3636
- Python &ge; 3,
3737
- Numpy &ge; 1.15 (automatically installed when using pip),
38-
- NetworkX &ge; 2.2 (automatically installed when using pip),
3938
- Python-libsbml &ge; 5.17 (automatically installed when using pip),
39+
- NetworkX &ge; 2.2 (automatically installed when using pip),
4040
- CopasiSE &ge; 4.27 (to be installed separately),
4141
- pip &ge; 19.1 (optional).
4242

@@ -122,7 +122,7 @@ Six types of selection are available:
122122
# Load a Markov Chain Monte Carlo (MCMC) instance
123123
mcmc = metevolsim.MCMC(sbml_filename='glycolysis.xml', objective_function=target_fluxes, total_iterations=10000, sigma=0.01, selection_scheme="MUTATION_ACCUMULATION", selection_threshold=1e-4, copasi_path='/Applications/COPASI/CopasiSE')
124124

125-
# Initialize the MCMC instance
125+
# Initialize the MCMC instance
126126
mcmc.initialize()
127127

128128
# Compute the successive iterations and write output files
@@ -167,14 +167,14 @@ Help on function set_species_initial_value in module metevolsim:
167167
set_species_initial_value(self, species_id, value)
168168
Set the initial concentration of the species 'species_id' in the
169169
mutant model.
170-
170+
171171
Parameters
172172
----------
173173
species_id: str
174174
Species identifier (as defined in the SBML model).
175175
value: float >= 0.0
176176
Species abundance.
177-
177+
178178
Returns
179179
-------
180180
None

0 commit comments

Comments
 (0)