-
Notifications
You must be signed in to change notification settings - Fork 29
/
detection_test.py
285 lines (237 loc) · 10.7 KB
/
detection_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import math
import pprint
from core.detection_module import DetModule
from core.detection_input import Loader
from utils.load_model import load_checkpoint
from utils.patch_config import patch_config_as_nothrow
from functools import reduce
from queue import Queue
from threading import Thread
import argparse
import importlib
import mxnet as mx
import numpy as np
import pickle as pkl
def parse_args():
parser = argparse.ArgumentParser(description='Test Detection')
# general
parser.add_argument('--config', help='config file path', type=str)
parser.add_argument('--epoch', help='override test epoch specified by config', type=int, default=None)
args = parser.parse_args()
config = importlib.import_module(args.config.replace('.py', '').replace('/', '.'))
return config, args
if __name__ == "__main__":
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
config, args = parse_args()
pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
transform, data_name, label_name, metric_list = config.get_config(is_train=False)
pGen = patch_config_as_nothrow(pGen)
pKv = patch_config_as_nothrow(pKv)
pRpn = patch_config_as_nothrow(pRpn)
pRoi = patch_config_as_nothrow(pRoi)
pBbox = patch_config_as_nothrow(pBbox)
pDataset = patch_config_as_nothrow(pDataset)
pModel = patch_config_as_nothrow(pModel)
pOpt = patch_config_as_nothrow(pOpt)
pTest = patch_config_as_nothrow(pTest)
sym = pModel.test_symbol
image_sets = pDataset.image_set
roidbs_all = [pkl.load(open("data/cache/{}.roidb".format(i), "rb"), encoding="latin1") for i in image_sets]
roidbs_all = reduce(lambda x, y: x + y, roidbs_all)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
coco = COCO(pTest.coco.annotation)
data_queue = Queue(100)
result_queue = Queue()
execs = []
workers = []
coco_result = []
split_size = 1000
for index_split in range(int(math.ceil(len(roidbs_all) / split_size))):
print("evaluating [%d, %d)" % (index_split * split_size, (index_split + 1) * split_size))
roidb = roidbs_all[index_split * split_size:(index_split + 1) * split_size]
roidb = pTest.process_roidb(roidb)
for i, x in enumerate(roidb):
x["rec_id"] = np.array(i, dtype=np.float32)
x["im_id"] = np.array(x["im_id"], dtype=np.float32)
loader = Loader(roidb=roidb,
transform=transform,
data_name=data_name,
label_name=label_name,
batch_size=1,
shuffle=False,
num_worker=4,
num_collector=2,
worker_queue_depth=2,
collector_queue_depth=2,
kv=None)
print("total number of images: {}".format(loader.total_record))
data_names = [k[0] for k in loader.provide_data]
if index_split == 0:
arg_params, aux_params = load_checkpoint(pTest.model.prefix, args.epoch or pTest.model.epoch)
if pModel.process_weight is not None:
pModel.process_weight(sym, arg_params, aux_params)
# merge batch normalization to speedup test
from utils.graph_optimize import merge_bn
sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)
sym.save(pTest.model.prefix + "_test.json")
# infer shape
worker_data_shape = dict(loader.provide_data + loader.provide_label)
for key in worker_data_shape:
worker_data_shape[key] = (pKv.batch_image,) + worker_data_shape[key][1:]
arg_shape, _, aux_shape = sym.infer_shape(**worker_data_shape)
_, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
out_shape_dict = list(zip(sym.get_internals().list_outputs(), out_shape))
_, out_shape, _ = sym.infer_shape(**worker_data_shape)
terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)
print('parameter shape')
print(pprint.pformat([i for i in out_shape_dict if not i[0].endswith('output')]))
print('intermediate output shape')
print(pprint.pformat([i for i in out_shape_dict if i[0].endswith('output')]))
print('terminal output shape')
print(pprint.pformat([i for i in terminal_out_shape_dict]))
for i in pKv.gpus:
ctx = mx.gpu(i)
mod = DetModule(sym, data_names=data_names, context=ctx)
mod.bind(data_shapes=loader.provide_data, for_training=False)
mod.set_params(arg_params, aux_params, allow_extra=False)
execs.append(mod)
all_outputs = []
if index_split == 0:
def eval_worker(exe, data_queue, result_queue):
while True:
batch = data_queue.get()
exe.forward(batch, is_train=False)
out = [x.asnumpy() for x in exe.get_outputs()]
result_queue.put(out)
for exe in execs:
workers.append(Thread(target=eval_worker, args=(exe, data_queue, result_queue)))
for w in workers:
w.daemon = True
w.start()
import time
t1_s = time.time()
def data_enqueue(loader, data_queue):
for batch in loader:
data_queue.put(batch)
enqueue_worker = Thread(target=data_enqueue, args=(loader, data_queue))
enqueue_worker.daemon = True
enqueue_worker.start()
for _ in range(loader.total_record):
r = result_queue.get()
rid, id, info, cls, box = r
rid, id, info, cls, box = rid.squeeze(), id.squeeze(), info.squeeze(), cls.squeeze(), box.squeeze()
# TODO: POTENTIAL BUG, id or rid overflows float32(int23, 16.7M)
id = np.asscalar(id)
rid = np.asscalar(rid)
scale = info[2] # h_raw, w_raw, scale
box = box / scale # scale to original image scale
cls = cls[:, 1:] # remove background
# TODO: the output shape of class_agnostic box is [n, 4], while class_aware box is [n, 4 * (1 + class)]
box = box[:, 4:] if box.shape[1] != 4 else box
output_record = dict(
rec_id=rid,
im_id=id,
im_info=info,
bbox_xyxy=box, # ndarray (n, class * 4) or (n, 4)
cls_score=cls # ndarray (n, class)
)
all_outputs.append(output_record)
t2_s = time.time()
print("network uses: %.1f" % (t2_s - t1_s))
# let user process all_outputs
all_outputs = pTest.process_output(all_outputs, roidb)
# aggregate results for ensemble and multi-scale test
output_dict = {}
for rec in all_outputs:
im_id = rec["im_id"]
if im_id not in output_dict:
output_dict[im_id] = dict(
bbox_xyxy=[rec["bbox_xyxy"]],
cls_score=[rec["cls_score"]]
)
else:
output_dict[im_id]["bbox_xyxy"].append(rec["bbox_xyxy"])
output_dict[im_id]["cls_score"].append(rec["cls_score"])
for k in output_dict:
if len(output_dict[k]["bbox_xyxy"]) > 1:
output_dict[k]["bbox_xyxy"] = np.concatenate(output_dict[k]["bbox_xyxy"])
else:
output_dict[k]["bbox_xyxy"] = output_dict[k]["bbox_xyxy"][0]
if len(output_dict[k]["cls_score"]) > 1:
output_dict[k]["cls_score"] = np.concatenate(output_dict[k]["cls_score"])
else:
output_dict[k]["cls_score"] = output_dict[k]["cls_score"][0]
t3_s = time.time()
print("aggregate uses: %.1f" % (t3_s - t2_s))
if callable(pTest.nms.type):
nms = pTest.nms.type(pTest.nms.thr)
else:
from operator_py.nms import py_nms_wrapper
nms = py_nms_wrapper(pTest.nms.thr)
def do_nms(k):
bbox_xyxy = output_dict[k]["bbox_xyxy"]
cls_score = output_dict[k]["cls_score"]
final_dets = {}
for cid in range(cls_score.shape[1]):
if cid >= 80:
continue
score = cls_score[:, cid]
if bbox_xyxy.shape[1] != 4:
cls_box = bbox_xyxy[:, cid * 4:(cid + 1) * 4]
else:
cls_box = bbox_xyxy
valid_inds = np.where(score > pTest.min_det_score)[0]
box = cls_box[valid_inds]
score = score[valid_inds]
det = np.concatenate((box, score.reshape(-1, 1)), axis=1).astype(np.float32)
det = nms(det)
dataset_cid = coco.getCatIds()[cid]
final_dets[dataset_cid] = det
output_dict[k]["det_xyxys"] = final_dets
del output_dict[k]["bbox_xyxy"]
del output_dict[k]["cls_score"]
return (k, output_dict[k])
from multiprocessing import cpu_count
from multiprocessing.pool import Pool
pool = Pool(cpu_count() // 2)
output_dict = pool.map(do_nms, output_dict.keys())
output_dict = dict(output_dict)
pool.close()
t4_s = time.time()
print("nms uses: %.1f" % (t4_s - t3_s))
for iid in output_dict:
result = []
for cid in output_dict[iid]["det_xyxys"]:
det = output_dict[iid]["det_xyxys"][cid]
if det.shape[0] == 0:
continue
scores = det[:, -1]
xs = det[:, 0]
ys = det[:, 1]
ws = det[:, 2] - xs + 1
hs = det[:, 3] - ys + 1
result += [
{'image_id': int(iid),
'category_id': int(cid),
'bbox': [float(xs[k]), float(ys[k]), float(ws[k]), float(hs[k])],
'score': float(scores[k])}
for k in range(det.shape[0])
]
result = sorted(result, key=lambda x: x['score'])[-pTest.max_det_per_image:]
coco_result += result
t5_s = time.time()
print("convert to coco format uses: %.1f" % (t5_s - t4_s))
import json
json.dump(coco_result,
open("experiments/{}/{}_result.json".format(pGen.name, pDataset.image_set[0]), "w"),
sort_keys=True, indent=2)
coco_dt = coco.loadRes(coco_result)
coco_eval = COCOeval(coco, coco_dt)
coco_eval.params.iouType = "bbox"
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
t6_s = time.time()
print("coco eval uses: %.1f" % (t6_s - t5_s))