-
Notifications
You must be signed in to change notification settings - Fork 0
/
Final Exam.nb
15375 lines (15212 loc) · 860 KB
/
Final Exam.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 880927, 15366]
NotebookOptionsPosition[ 874987, 15223]
NotebookOutlinePosition[ 875403, 15241]
CellTagsIndexPosition[ 875360, 15238]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
Bayesian Statistical Methods Fall 2016 FINAL Exam (Take-Home)\
\>", "Title",
CellChangeTimes->{3.689900288830145*^9}],
Cell["Qi Chen(qc586)", "Author",
CellChangeTimes->{{3.689900331492785*^9, 3.6899003356835423`*^9}}],
Cell[CellGroupData[{
Cell["Problem 1", "Section",
CellChangeTimes->{{3.689900421917297*^9, 3.689900423411268*^9}}],
Cell["Consider the following Bayesian probability model:", "TextNoIndent",
CellChangeTimes->{3.689900434436612*^9}],
Cell[BoxData[{
FormBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"1", ",", "1"}]], ",",
SubscriptBox["Y",
RowBox[{"1", ",", "2"}]], ",", "\[Ellipsis]", ",",
RowBox[{
SubscriptBox["Y",
RowBox[{"1", ",", "26"}]], "|",
SubscriptBox["\[Mu]", "1"]}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Tau]", "~", "i"}], ".", "i", ".", "d"}], " ",
RowBox[{"N", "(",
RowBox[{
SubscriptBox["\[Mu]", "1"], ",",
RowBox[{"precision", "=", "\[Tau]"}]}], ")"}]}], ";"}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"2", ",", "1"}]], ",",
SubscriptBox["Y",
RowBox[{"2", ",", "2"}]], ",", "\[Ellipsis]", ",",
RowBox[{
SubscriptBox["Y",
RowBox[{"2", ",", "36"}]], "|",
SubscriptBox["\[Mu]", "2"]}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Tau]", "~", "i"}], ".", "i", ".", "d"}], " ",
RowBox[{"N", "(",
RowBox[{
SubscriptBox["\[Mu]", "2"], ",",
RowBox[{"precision", "=", "\[Tau]"}]}], ")"}]}], ";"}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"3", ",", "1"}]], ",",
SubscriptBox["Y",
RowBox[{"3", ",", "2"}]], ",", "\[Ellipsis]", ",",
RowBox[{
SubscriptBox["Y",
RowBox[{"3", ",", "46"}]], "|",
SubscriptBox["\[Mu]", "3"]}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Tau]", "~", "i"}], ".", "i", ".", "d"}], " ",
RowBox[{"N", "(",
RowBox[{
SubscriptBox["\[Mu]", "3"], ",",
RowBox[{"precision", "=", "\[Tau]"}]}], ")"}]}], ";"}]}],
TraditionalForm]}], "DisplayFormulaNumbered",
CellChangeTimes->{{3.6899005209300117`*^9, 3.6899005360658484`*^9}, {
3.689900616630041*^9, 3.689900694331402*^9}}],
Cell[TextData[{
"A priori, ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Mu]", "1"], ",",
SubscriptBox["\[Mu]", "2"], ",",
SubscriptBox["\[Mu]", "3"]}], TraditionalForm]],
FormatType->"TraditionalForm"],
" and \[Tau] are mutually independent, with marginal prior distributions \
given by"
}], "TextNoIndent",
CellChangeTimes->{{3.689900720798965*^9, 3.689900742698264*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["\[Mu]", "1"], "~",
RowBox[{"N", "(",
RowBox[{"0.0", ",",
RowBox[{"precision", "=",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ")"}]}], ",", "\[IndentingNewLine]",
RowBox[{
SubscriptBox["\[Mu]", "2"], "~",
RowBox[{"N", "(",
RowBox[{"0.0", ",",
RowBox[{"precision", "=",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ")"}]}], ",", "\[IndentingNewLine]",
RowBox[{
SubscriptBox["\[Mu]", "3"], "~",
RowBox[{"N", "(",
RowBox[{"0.0", ",",
RowBox[{"precision", "=",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ")"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\[Tau]", "~",
RowBox[{"Gamma", "(",
RowBox[{"0.01", ",", "0.001"}], ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.689900748970496*^9, 3.6899008015989647`*^9}}],
Cell[TextData[{
"Let ",
Cell[BoxData[
FormBox[
RowBox[{"\[Theta]", "=",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Mu]", "1"], ",",
SubscriptBox["\[Mu]", "2"], ",",
SubscriptBox["\[Mu]", "3"], ",", "\[Tau]"}], ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
". Assume that, given \[Theta], the three samples are mutually independent."
}], "TextNoIndent",
CellChangeTimes->{{3.689900811910973*^9, 3.689900853216401*^9}}],
Cell["\<\
(a) Set the random seed as 12345 in R and simulate 3 independent random \
samples, one each from the above sampling models with the specifications \
below:\
\>", "Item",
CellChangeTimes->{3.6899008663488703`*^9}],
Cell[BoxData[{
FormBox[
RowBox[{
RowBox[{
RowBox[{"Sample", " ", "1"}], "=",
RowBox[{
RowBox[{
SubsuperscriptBox["y", "1", "*"], ":", " ",
SubscriptBox["n", "1"]}], "=", "25"}]}], ",", " ",
RowBox[{
SubscriptBox["\[Mu]", "1"], "=", "10"}], ",",
RowBox[{
RowBox[{"\[Tau]", "=", "1.0"}], ";"}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{
RowBox[{
RowBox[{"Sample", " ", "2"}], "=",
RowBox[{
RowBox[{
SubsuperscriptBox["y", "2", "*"], ":", " ",
SubscriptBox["n", "2"]}], "=", "35"}]}], ",", " ",
RowBox[{
SubscriptBox["\[Mu]", "1"], "=", "30"}], ",",
RowBox[{
RowBox[{"\[Tau]", "=", "1.0"}], ";"}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{
RowBox[{
RowBox[{"Sample", " ", "3"}], "=",
RowBox[{
RowBox[{
SubsuperscriptBox["y", "3", "*"], ":", " ",
SubscriptBox["n", "3"]}], "=", "45"}]}], ",", " ",
RowBox[{
SubscriptBox["\[Mu]", "1"], "=", "40"}], ",",
RowBox[{"\[Tau]", "=", "1.0"}]}],
TraditionalForm]}], "DisplayFormulaNumbered",
CellChangeTimes->{{3.689900900842787*^9, 3.689900957045086*^9}}],
Cell["\<\
In the rest of this question, pretend that you do not know the model \
parameters.\
\>", "TextNoIndent",
CellChangeTimes->{{3.689900965595476*^9, 3.6899009866545353`*^9}}],
Cell["\<\
Solution: The generation code is as follows and is part of the appendix:\
\>", "TextNoIndent",
CellChangeTimes->{{3.6899813161100616`*^9, 3.689981323354822*^9},
3.6900213379874277`*^9, {3.690021449306218*^9, 3.690021463771649*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"set", ".", "seed"}],
RowBox[{"(", "12345", ")"}]}], "\n",
RowBox[{"n1", "=", "25"}], "\n",
RowBox[{"mu1", "=", "10"}], "\n",
RowBox[{"tau", "=", "1"}], "\n",
RowBox[{"ystar1", "=",
RowBox[{"rnorm",
RowBox[{"(",
RowBox[{"n1", ",",
RowBox[{"mean", "=", "mu1"}], ",",
RowBox[{"sd", "=",
RowBox[{"1", "/", "tau"}]}]}], ")"}]}]}], "\n",
RowBox[{"n2", "=", "35"}], "\n",
RowBox[{"mu2", "=", "30"}], "\n",
RowBox[{"tau", "=", "1"}], "\n",
RowBox[{"ystar2", "=",
RowBox[{"rnorm",
RowBox[{"(",
RowBox[{"n2", ",",
RowBox[{"mean", "=", "mu2"}], ",",
RowBox[{"sd", "=",
RowBox[{"1", "/", "tau"}]}]}], ")"}]}]}], "\n",
RowBox[{"n3", "=", "45"}], "\n",
RowBox[{"mu3", "=", "40"}], "\n",
RowBox[{"tau", "=", "1"}], "\n",
RowBox[{"ystar3", "=",
RowBox[{"rnorm",
RowBox[{"(",
RowBox[{"n3", ",",
RowBox[{"mean", "=", "mu3"}], ",",
RowBox[{"sd", "=",
RowBox[{"1", "/", "tau"}]}]}], ")"}]}]}]}], "Code",
CellChangeTimes->{3.690021478703027*^9}],
Cell[TextData[{
"(b) Perform an Exploratory Data Analysis on the simulated data, ",
Cell[BoxData[
FormBox[
RowBox[{
SuperscriptBox["y", "*"], "=",
RowBox[{"(",
RowBox[{
SubsuperscriptBox["y", "1", "*"], ",",
SubsuperscriptBox["y", "2", "*"], ",",
SubsuperscriptBox["y", "3", "*"]}], ")"}]}], TraditionalForm]]],
" , that you generated in part (a) as appropriate."
}], "Item",
CellChangeTimes->{
3.6899008663488703`*^9, {3.689901002787726*^9, 3.6899010309331713`*^9}}],
Cell["Solution: The side-by-side Box-plot is as follows:", "TextNoIndent",
CellChangeTimes->{{3.689964679448863*^9, 3.6899646811864443`*^9}, {
3.690021314479516*^9, 3.690021325168953*^9}, {3.690021514842545*^9,
3.690021527226602*^9}, {3.6900218315917273`*^9, 3.690021839676764*^9}}],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzs3QuMnHW9+P/SQv8NxEAayDEYDRgJEiSoEciBCEiglAgH8EcLAka5yAEV
hLYHRbCIByiVWwWOInKHQtFTQJSbF8CDBaF6uMlFpVJAKkUuBbn1+v2fzxOf
zXS7291tZ3Z2P/N6JV9xZ2ZnvzszT/d5z3OZzQ//6meOGjlixIjJY/7vfz5z
2Nc+NWnSYSf9v3X/74vdTpryxcNH/d//+f/+73+O/78RFxYAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAGiCFStWlJkzZ5YvfvGL5WMf+1jZeOONy84771yOP/74
8vTTT69021deeaV85jOfqcaNN97Y53033v6mm25q6rynTZtW3e+///u/N/V+
m2Ggj9MPf/jDrtvH89EMr7/+etd9No4DDjigHHzwweWrX/1que2228qSJUua
8vMGy0Af27789a9/Lf/4xz+aMLM19/jjj5dDDz20vP/97y/bbLNNOe6441Z7
+7lz55b//M//rB6Dr3zlK2X27NkDet0888wz5ZRTTin77LNP+Zd/+Zey1VZb
lf3226/6d2C4vR4al53ly5e3ezp9ijmec8455ZOf/GT12I8bN67cf//9Pd72
1Vdf7XEZ/uxnP1u+9KUvlcsuu6y88847TZnXUFgOAIC+vf322+XII48sI0aM
6HGMHDmy/PSnP+26/YIFC7quO//88/u8/8bbz5gxo6lznzhxYnW/m2++eVPv
txkG+jhNnjy56/bNWgeNzunteW0cEyZMGFbr7AN9bHsTr/3zzjuvjB49ujz3
3HNNnOHAvPXWW2WTTTZZ5TnpzRVXXFEtl92fx2jyZcuW9fnz7r333jJ27Nhe
Xw+77LJLeffdd5v5K7ZUK5adVvre9763ymP+v//7vz3eduHChX0uv9Hec+bM
WeP5DJXlAADonxtuuKFrPWCPPfYoF1xwQbn++uurbVr15RtssEHVAiHeDz7s
sMOq8bOf/azP++/Ufhvo49TqfovtqrG9MsYZZ5xRTjzxxGo7a319bHcZLprV
b/Far++nneutTzzxRNc8pkyZUl5++eXy97//vcfbxuV1u+2www7lkksuqbab
1d9/zTXXrPZnxTa6D37wg9VtN9poozJp0qTy4x//uEyfPr185CMf6bqfs846
qxW/aksMt377/Oc/X8111KhR5Y9//GP1el66dGmPt23st49+9KNl6tSp5Rvf
+Ea17Xzbbbdd6d/ouO2aGCrLAQDQP1/4wheqv9vvec97yuLFi1e67nOf+1zX
3/Vf/OIX/b7PaJfYdy/01W+xPvnCCy+s0T5APfVbrMPE9oxWi/2MYh+0aKQ1
WWeM7STxe9ff29c66Jo8To39FttYu5s3b17X9UcffXSv9xPP56JFi/r9c5sl
5t/Tc9nffutr3n2tt8ZzFD8r9itbm33U+prH3Xff3TWPO+64Y7X3dfPNN5cx
Y8aUddZZp8yfP7+6LO47WiC+v699iRtb8b/+679Wui724ayv22mnnXr8/ng+
4ufGY9LfbXSxTHbfvhuv57/97W/9XnZ6ey2EZi07g/V877rrrl393ZfGfjvm
mGNWui5+13PPPbfr+tifsid9PWf96bc1ed4BgNY46qijuv52X3vttSvtfxXr
Dvfdd195+OGHu7a/vfjii9V7vTEuuuiile7rwQcfrN4jjvuK9cs4riO+v6d+
i1aM43c23HDDrv0045i7+Fn91dhv8XM+/OEPd93Xv/3bv5Xnn3++ut2f//zn
rjmfdtppK91H7DsUx6DEdd3Xj3oSx4vF8UmN+y994AMfKFdfffVKt+vtcYr1
wq9//evVvkrxvfH7f//73y8nnHBCj+uga/M49dVvMcd4nnrqoFhH+9a3vlW2
2267rvv40Ic+VO271zi/OP6s/j0bj92L+cV7AnF5vA762j8z+jFue9BBB5WH
Hnqo7Ljjjl2/77777lutV9dW12/9nXcc67nuuut23SaaaLPNNut63OLYz7qJ
6tdzvN7iMeuP/s4jjkWsXwsx4v/H47C6/eHi+6N9avH6rr8/1sVXp/G2u+22
2yrr67EMx7F10XmN4r2Kvffee6XX/XrrrVdtv2t832fPPfes5v/Nb36z3H77
7dXvXP9eJ510UjX36667rmy66aZd2wDj9d1oIK+F0Fu/9XfZGazn+7e//W31
e9XbT+O/8XX8Tr1ZXb+F+Pe68d/cxueiP8/Z6paD/t4HADC4Yt++xr/NsU9d
rD/F+RB62h+nt3XnWCdqPCYn1svq9bae+i2O76kvj/Wr+ntjHSparD/qfovv
ie+P/66//vpd9/ve9763aztgrLfFZXF+iMZ1vNje0d9tH7H+VffO+973vmq9
pt4HMS6Pdd++Hqc4RqlxHbFet2x8nBrntzaPU2O/ffrTn66aIEYc/xTbcaKr
4ro4Fiq2xdVivax+bHsasf9Xo3obboxYN4912dhfs/69ohn6Ut9HrDvWz2Hj
emU8b2+88cZqH9uBzDvOFdL9+njNhlifrh/j2A4Vo37e+3N+mYHMY6+99urx
Nv/zP//T52MW7z3E7//xj3+8+p4tt9yy2s60OvHaamyM+L1ie1CcTyO6rafj
5+J76tdKjNj/snFZj/ceanFOjvp5jP/GeyONr+26xRr33Y0R7x3VBvJaCL31
W3+XncF6vmPZ6+n62G+9N331Wzj22GO7blMvx/19zla3HAzkeQcABle8b9zT
ekX8rY51j3rbW+ht3Tm2d9WXx/Fzsb0lmi72Eereb43NFO+Px3po7JdTr/vF
doH+aFxnin09Y26x31IcI1JfXh/Hc9VVV3VdFh1Wi1at1yf7ej85th/U6zH1
Ol18z/77718OOeSQlY4h6+lxeuCBB7oui/X2WNeK/ZLicWl83Ot10LV9nPpz
/pJ4L/3JJ59c6fti20njOlq8Bx/nV4htRfXlccxULfYXq9fXYz05zodY3677
dsneNDZgtGZs/4ljvb72ta91Xf6d73yn18d2oPN+6aWXVnrdx/n/4rGNn1lf
FseG1m699daqc6IV4narM5B5xHMU/7/xZ8Y2n/5s23j00Ue7vi+24zz77LP9
eqyjp+tj4LqPuDzeu2n0u9/9rmy//fZVQ9XvUbz55ptd27ujG2v1azNGbAus
txU2Nlwsk3F5PMf1Nq/YD6A2kNdC6Knf+rvsDObzHc9pPLf1v4nR0fF147+v
3fWn3+KxqG8T++IO5DnrbTkY6PMOAAy+3//+99U+Md3Pgxcj9s+p9yPqad05
Wq1+Xza2BTSKfai691scp1H3Yaz712Jdv77tX/7yl+qy2J5wzz33rDTq/Z8a
+y22HdTiXACxfSwu33333avLXnvtta738KPDQuzLWL+/X18W4n3y7j8zujDW
O+ufF+t/F154YbV/V0/H3PT0OMV/68ti/bBRrCd1XwcdyOPUk/6efzLWJx95
5JGu76vXz2L7ZePvFut19feMHz9+pZ8Vj1m9zaIe0bSN2y5W91w2rrPH5bXY
HlTvgxfnReztsV2Tefd03E/0dP1ajhaN9fHYVhnnFOmvgc7jrrvu6rp8IMeZ
xvsB8f5D/fjEfxsfu9WJ3/PSSy+ttv309Jr4wQ9+sMr31OfYiOU9Xvef+tSn
uh6nWt1HcVnj716/vrvv41dvp218L2Igr4XQU7/1d9lpx/Mdc4/LejvGsFF/
+u273/1u121+8pOfrHRdf56zvo5/6899AADtE+sf8b5+tEmsj9R/1+Pr0NO6
c7zvX18W7+U2ajzepu63+u9/9NS//uu/do3G89/Vx//ENq3u65Zxvr1Q91ts
e+h+/rZ43z6ui/23anGsR1wWx97EuuDPf/7zrvuM9ZJafWxO44g+jHWbugsb
R/yMU089daX1xJ4ep8b9nLqf36DxOMR6HXAgj1NPGvvtiCOOqO43RqyHxc+P
bRR1r9f7lTauc/a0f1Ssc8Z1cWxb9/3KGt/Hj+u7b1dY3XNZr7PH9sDu546I
z7pqXF/s6bFdk3n3tt4a22u6z7M+nrPevtGbNZnHmvZbLV779X5uW2yxxYA/
PzCep3g/oXFfuthe1thZ0RFxrsvY17BxW1r9u9TqfvvEJz6x0s+oX8txrGij
umViv8raQF4Load+G8iyM9jPd7P7Lc4lW9+m8di+/j5nq+u3/t4HADA4Yr+m
M888s+qKOG6pu9jmVr83HceBhJ7WneNvfn1Z435NIfYj6t5v9XvxsT4Q5zvo
acQxWqE//VYfr9EoPpe4+/pivJdf30cc//LlL3+5+v9xHu5GvfVb/ZjFdrit
t956ldvEMXb18UM9PU7xmcz1Zd33j2s8VqdeBx3I49STvs5fEr797W+v9DvG
dof66//4j/9Y5faN21caOyH+f/djgLofT9jffuveH/U6exyn19tjuybz7m29
Na6/8847y4EHHrjKOmuMuK43azKPte23EJ/j3NM6fHdxvpnY1hw9Xx8b2qje
RzhG7D8X4j2YWI7q5yc678orr6wen+7LX/37xbLQKLavxeXxmm7UV7/19VoI
PfXbQJadwX6+m91vsf92fZv6PZOBPGe9LQcDuQ8AYHDEsQz18SexPtR4ToDw
9NNPd/VbrDeFntado1nq+4nj0Bo17jNY91v9Pn98T+zX2Dif7uemjvWJ6IDG
UbdUYy80rnfEfGJ7Ulwex5k1Xl4fpxUtFe8fx//vfs6+eM+9+8+st63Fdqv6
+JD476xZs6ptDfU86nN19PQ4Ne7nFOdqr8U2hp7OXzKQx6kn/em3umFj1Nsa
6jaNbY2N+4M1/k7d959sPL6w3o8ytu01ngNndc9l4z5z8ZlYtfj58fnEcXls
U+ntsV2TeTeutzYeOxavkziGKZ6X6OzYT/GUU07pum3jsVo9Geg8BtJvca7S
eBziPYfGbVMnn3xyv/qtcR/gnj7Po97vMEa9T2193Fm8RutzuobDDz+8ujyO
Ha311W/dz5m/un7rz2sh9NRvA1l2Bvv5bma//eEPf+ha3mJ7YW0gz1lvy8FA
7gMAGDz1+9kx4hwkce6CaJA4B0m9nhGjPj9cb+vOca7vuCx6r97uEse8N26n
qtcXGz8zPD43ONaZYr0n3keO74+fG+tZfWnstzhXQHwmW2xTaDx/STRTo3r9
tfFYrcZ1k9WpP7cpWrfx85Xj87Dr+6p7pafHKdarGx/r6OUYjdvAGtdB1/Zx
auy32N7wq1/9qhrRCPE5CPE5wI3nMq+3xzR+lkF0QfwucY6Txv3rGs9fEp1f
92eshzfOO7Yr9md/vsZ19thXK+YSj01sH64vP/vss3t9bNdk3tFC9eXxWo1t
KbFPbf1eRDzmtej22AYRl8f+aqsz0HkMpN/ifPT1beN1E/OK7cr1vs7x2lzd
Z5fFa7B+7cf7F7E8xGWxPfr0009f6fyq9euwPj9jHCtav0ZimanPMRv7KNaa
3W99vRZCT/3W32WnHc/3mvZbnO82lt9f/vKX5aabbqoeg/o8nvE7NX7mw0Ce
s56Wg4HeBwAweGJ/wDh+q7Efuo84lqynz+NuXHd+6qmnVvr8pFiPjP/G9q56
Pajutzj+qm6hel2x3k8nRqyb9Efdb/XPiJ8fx8LV9xOXd//M3zhnQePvFutE
/XXLLbd0rd/Gz4sGazyeJvZJq/X2OMXnK9eXN8633q7QuA66to9Tf89fEuOa
a67p+r5YV47eq69rPGd4jFgvrcUc6/XRuF29XbHxcxKiOfpSr7PHfcR6YffP
gojtqdHnq3tsBzLv0HhunXhe4/bxeqmPWaqfl3ie43Ox6uf9scceW+3vMtB5
DKTf4jyK9Tn463k33nd8Hkhfpk2bttrXQvyOjefBaDw/ajwP0eTxHDX+7Hrb
fTP7rT+vhdBTv/V32YmuG+zne037rbcRP6/7ttSBPGc9LQdxTOVA7gMAGFyx
H2DsT9jYXzHi/NCxLavxs5dX99nJcaxb4/a2OPdjnHOwfo+4cR0jthHE+S4b
P1s3bh/nxOuvut/iPIfxvnF9HrgYsd9kb5+F1biu1XjO8P6IbYuN54qMEdue
YttFYyuu7jPK4hij+rGO3z/O9RfHlXRfB13bx6m3fov7iDlHt8f+rj197l38
LlOmTKnOh1F/X+wPefHFF680v9hmUV/fuE0kjp1s/Gy7vj4Drl5nj9dKnAu1
Ps9gjHi+Gs/hvrrXYH/nXT+29TaG+rmIbQ+xv13cR/djoWK9u/GzJ1ZnIPMY
6PFvcc732O+1cT06uqOvc23U4udHv3Q/hjOaJV5bsRw3itds47l34vUT/17E
z+vejc3st/68FkJvn//W32VnsJ/vZvRbbDuNxzL27ez++R9hIM9Zb8vBQO4D
AGiPOA4k1o1iP5z+7L/Ym+im1X2mUaPYty6Oi2o8RmVtxPz7uq96/SnW19b0
/eP4/WKbY/yuPX3mcV/iGJz4/Lf+fm+zH6eBiN8xttO2UuM6ey1+38Zzeg5U
f+cdt4mf1X0/z1h/jcv/9Kc/rdV2hlY9frEtLo4Pa9yXd6Di94r1/9gvrqfP
wWgU2+DjsejPsZdro9mvhf4uO0P9+V4TA3nOelsOBut5BwBoFOu4sW7SeKxa
vLfM0NDTOjudyWsBAIDG8yzW295i+xdDg3V2al4LAADE54/HsfdxPoI99tij
3H///e2eEg3i3IJx/vM4RwKdzWsBAIAQx3X051z2AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO129dVXl+22267sueee
hmEYhmEYhmEkGPvtt19566232p0atMDuu+9e5syZUx555BHDMAzDMAzDMBKM
0aNHlz/+8Y/tTg1aYPz48eXhhx9u9zQAAIAm+eQnP6nfktJvAACQi37LS78B
AEAu+i0v/QYAALnot7z0GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QYAALno
t7z0GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QYAALnot7z0GwAA5KLf8tJv
AACQi37LS78BAEAu+i0v/QYAALnot7z0GwAA5KLf8tJvAACQi37LS78BAEAu
+i0v/QYAALnot7z0GwCQzdy5c8uUKVOG5fjqV79ajj322LbPY03HnXfe2e6n
n6LfMtNvAEA2zzzzTLnxxhuH5fjKV75SJk6c2PZ5rOl4/PHH2/30U/RbZvoN
AGDouOqqq8ppp53W7mkwzOm3vPQbAMDQod9oBv2Wl34DABg69BvNoN/y0m8A
AEOHfqMZ9Fte+g0AYOh45ZVXyoIFC9o9DYY5/ZaXfgMAgFz0W176DQAActFv
eek3AADIRb/lpd8AACAX/ZaXfgMAGDqefPLJ8uCDD7Z7Ggxz+i0v/QYAMHT4
/ACaQb/lpd8AAIYO/UYz6Le89BsAwNCh32gG/ZaXfgMAGDr0G82g3/LSbwAA
Q8eNN95YLrjggnZPg2FOv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcA
AMhFv+Wl3wAAIBf9lpd+AwAYOm6//fZyxRVXtHsaDHP6LS/9BgAwdPj8N5pB
v+Wl3wAAhg79RjPot7z0GwDQkwULFpSNN9647LDDDsYgji233LJ88IMfbPs8
Om1svfXW5emnn273Ytc0+i0v/QYA9OTGG28sX/rSl6p1WsPIPr7zne+U888/
v92LXdPot7z0GwDQk+i3yZMnt3saMCguuugi/cawoN8AgJ7oNzqJfmO40G8A
QE/0G51EvzFc6DcAoCf6jU6i3xgu9BsA0BP9RifRbwzUihUryquvvlpef/31
Qf25+g0A6En02z777FOuvfZaw0g/Dj30UP1GnxYuXFimT59ettpqqzJq1Kgy
YsSIamy00UbVY37GGWeUt956q6Vz0G8AQE+i3zbYYIOu9RPDyD7OO++8di92
TaPfmi8+E3OLLbaoPqMxOm3mzJnl1ltvLbfddlu57rrryrRp06rPEYy2e/75
51s2D/0GAPREvxmdNvQbqzN16tRqn4TFixf3epulS5eWCRMmlBkzZrRsHvoN
AOhJ9NvOO+9cTj31VMNIP/bcc0/9xmrtvffe5Uc/+lGft7vlllvKuHHjWjYP
/QYA9MT5S+gkzl9CX84666wyadKkPm83ZcqUcuSRR7ZsHvoNAOiJfqOT6Df6
8tRTT5UxY8aUgw8+uNrGFg01f/788txzz5XHHnus3HHHHeWwww6rzmsyd+7c
ls1DvwEAPdFvdBL9Rn9Eqx1wwAFl5MiRPR5DOXHixPLggw+2dA76DQDoiX6j
k+g3BmLJkiVVy91///3l3nvvrR7rRYsWrdV9RpOddNJJfY44r1Sc7xIAoJF+
o5PoN9bG22+/XV588cW1uo/YF/OGG27oc4wePbpcfvnlTZo5AJCFfqOT6DfW
xk9+8pPy3ve+d1B+1nve855+nQcTAOgs+o1Oot/oy2WXXVZ9BlxPI457i+1i
9dezZ89u2Tz0GwDQE/1GJ9Fv9OXLX/5ydY6STTbZpOy4444rjS222KI6p0n9
9RlnnNGyeeg3AKAn+o1Oot/oy/Lly8vFF19c9dOll15afV2z/yQA0G76jU6i
3+ivJ554onziE58o++67b1mwYEF1mX4DANpNv9FJ9BsD8c4775RTTjmlbLTR
RuXmm2/WbwBA2+k3Ool+Y038+te/Lu9///vLVlttpd8AgLbSb3QS/caaeuWV
V6pzm0yYMGFQfp5+AwB6ot/oJPqN4UK/AQA90W90Ev3GcKHfAICeRL8deuih
1efQGkb2Eeei0G8MB/oNAOjJ22+/XU488cQyZcoUw0g/jjrqqPLGG2+0e7Fr
Gv2Wl34DAIBc9Fte+g0AYOh49NFHy5w5c9o9DYY5/ZaXfgMAGDquuuqqctpp
p7V7Ggxz+i0v/QYAMHToN5pBv+Wl3wAAhg79RjPot7z0GwDA0KHfaAb9lpd+
AwAYOm655Zbygx/8oN3TYJjTb3npNwAAyEW/5aXfAAAgF/2Wl34DAIBc9Fte
+g0AAHLRb3npNwAAyEW/5aXfAACGDuefpBn0W176DQBg6PD5bzSDfstLvwEA
DB36jWbQb3npNwCAoUO/0Qz6LS/9BgAwdOg3mkG/5aXfAIBsZs2aVUaMGGG0
YUyfPr3dTz9Fv2Wm3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl
3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCA
XPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W95
6TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAA
IBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRb
XvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcA
AMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9
lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPTb4Hnn
nXfKE088UZ599tmyfPnylv88/QYAALnot+a7/PLLy/nnn7/SZRdffHEZPXp0
GTFiRDW23XbbMmfOnJbOQ78BAEAu+q35TjjhhHLIIYd0fX3jjTdWzTZhwoQy
e/bscuWVV5Zx48aVMWPGlKeeeqpl89BvAACQi35rvu79ttdee5Xx48evcrtd
d921TJo0qWXz0G8AAJCLfmu+7v22/fbbl5kzZ65yu+uvv77ssssuLZuHfgMA
gFz0W/NFv+2///5l6dKl1ddnn312Oeecc1a53YknnlgmTpzYsnnoNwAAyEW/
NV/sExnHu8X5SvbYY49y4IEHlg022KA8+eST1fULFy4sJ598cllvvfVa2lf6
DQAActFvzbdkyZLqvCQ33XRTOe2008q+++5bxo4dW+68887q+lmzZlV9N3Xq
1JZ+joB+AwCAXPTb4Fm2bFn135deeqnaBremfvWrX5Udd9yxz7HOOuuUGTNm
NGv6AABAm+m3wRXb29am3cIbb7xR/vznP/c51l9//R7PmwIAAAxP+q01Xn75
5XLNNdeUCy64oDzzzDPVZbEtbNNNN632ndx8883LXXfd1dI52H8SAABy0W/N
F+22zTbblFGjRlXbwDbZZJOqo+J8Jscdd1y56qqryu67715GjhxZHn/88ZbN
Q78BAEAu+q35pk2bVn2uWxzntmjRonLsscdW29y6H4sWn+l9zDHHtGwe+g0A
AHLRb80X55uMbWy1p59+uuq3efPmrXS7OA/lTjvt1LJ56DcAAMhFvzXft771
rTJlypSVLrvssstWOW/JSSedVCZMmNCyeeg3AADIRb8130MPPVTWXXfdMnny
5PLiiy+ucn103Kmnnlp9fvfs2bNbNg/9BgAAuei31ojPaNthhx3KAw88sMp1
l1xySfXZbGeeeWZZsWJFy+ag3wAAIBf91jrxWW9LlixZ5fLY/hbnqGw1/QYA
ALnot7z0GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QYAALnot7z0GwAA5KLf
8tJvAACQi37LS78BAEAu+i0v/QYAALnot7z0GwAA5KLf8tJvAACQi37LS78B
AEAu+i0v/QYAALnot7z0GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QYAALno
t7z0GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QYAALnot7z0GwAA5KLf8tJv
AACQi37LS78BAEAu+i0v/QYAALnot7z0GwAA5KLf8tJvAACQi37LS78BAEAu
+i0v/QYAALnot7z0GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QYAALnot7z0
GwAA5KLf8tJvAACQi37LS78BAEAu+i0v/QbQf88++2w566yzhuWYNm1aOf30
09s+jzUdP/nJT9r99AMMG/otL/0G0H8LFiwol1566bAckydPLtttt13b57Gm
4+6772730w8wbOi3vPQbQGe45557yuc+97l2TwOAQaDf8tJvAJ1BvwF0Dv2W
l34D6Az6DaBz6Le89BtAZ9BvAJ1Dv+Wl3wA6w6uvvloef/zxdk8DgEGg3/LS
bwAAkIt+y0u/AQBALvotL/0GAAC56Le89BsAAOSi3/LSbwCdYeHCheWBBx5o
9zQAGAT6LS/9BtAZfH4AQOfQb3npN4DOoN8AOod+y0u/AXQG/QbQOfRbXvoN
oDPoN4DOod/y0m8AneE3v/lNOeqoo9o9DQAGgX7LS78BAEAu+i0v/QYAALno
t7z0GzDY3nzzzXLQQQeVAw44wDDSj3/7t38rDz74YLsXO6DD6Le89Bsw2H73
u9+VXXfdtfz2t781jPRj5syZ5Ygjjmj3Ygd0GP2Wl34DBlv0W2yTgE7ws5/9
rHzlK19p9zSADqPf8tJvwGDTb3QS/Qa0g37LS78Bg02/0Un0G9AO+i0v/QYM
Nv1GJ9FvQDvot7z0GzDYot9222238uijjxpG+nHhhReWY445pt2LHdBh9Fte
+g0YbNFvY8eOLSNGjDCMjhif//zn273YAR1Gv+Wl34DBpt+MThv6DRhs+q31
VqxYUV599dXy+uuvD+rP1W/AYIt+23zzzcuee+5pGOnHtttuWw477LB2L3ZA
h9FvrbFw4cIyffr0stVWW5VRo0Z1vU+30UYbVY/5GWecUd56662WzkG/AYPN
+UvoJM5fArSDfmu+BQsWlC222KJsueWWVafNnDmz3HrrreW2224r1113XZk2
bVrZeuutq7Z7/vnnWzYP/QYMNv1GJ9FvQDvot+abOnVq2WeffcrixYt7vc3S
pUvLhAkTyowZM1o2D/0GDDb9RifRb0A76Lfm23vvvfvVTbfccksZN25cy+ah
34DBpt/oJPoNaAf91nxnnXVWmTRpUp+3mzJlSjnyyCNbNg/9Bgw2/UYn0W9A
O+i35nvqqafKmDFjysEHH1xtY3v44YfL/Pnzy3PPPVcee+yxcscdd1Tnq4rz
msydO7dl89BvwGDTb3QS/Qa0g35rjWi1Aw44oIwcObLHz4uZOHFiefDBB9fo
vpctW1adu7KvscEGG5RZs2Y1+TcD6J1+o5PoN6Ad9FtrLVmypGq5+++/v9x7
773VY71o0aK1us/Yphfb1voa0YnnnHNOk34TgL7pNzqJfgPaQb8NruXLl1ef
DTcY7D8JDDb9RifRb0A76LfWePnll8s111xTLrjggvLMM89Ul8VnBWy66abV
drHNN9+83HXXXS2dg34DBpt+o5PoN6Ad9FvzRbtts8021flJ1l9//bLJJptU
HTV69Ohy3HHHlauuuqrsvvvu1bFxjz/+eMvmod+Awabf6CT6DWgH/dZ806ZN
K7vsskt56aWXqmPdjj322GqbW/fP6h4/fnw55phjWjYP/QYMNv1GJ9FvQDvo
t+bbd999q21staeffrrqt3nz5q10uzg35E477dSyeeg3YLDpNzqJfgPaQb81
37e+9a3qs7kbXXbZZauct+Skk04qEyZMaNk89Bsw2B566KHq/arYD8Ewso8P
f/jD5Qtf+EK7Fzugw+i35ov1l3XXXbdMnjy5vPjii6tcHx136qmnlvXWW6/M
nj27ZfPQb0A73HHHHeXSSy81jI4Yb7zxRrsXOaDD6LfW+NWvflV22GGH8sAD
D6xy3SWXXFLWWWedcuaZZ5YVK1a0bA76DQAActFvrROf9Raf391dbH+Lc1S2
mn4DAIBc9Fte+g0AAHLRb3npNwAAyEW/5aXfADrDww8/XKZPn97uaQAwCPRb
XvoNoDPcc8895XOf+1y7pwHAINBveek3gM6g3wA6h37LS78BdAb9BtA59Fte
+g2gM+g3gM6h3/LSbwCd4emnny433HBDu6cBwCDQb3npNwAAyEW/5aXfAAAg
F/2Wl34DAIBc9Fte+g0AAHLRb3npN4DOsHjx4vLGG2+0exoADAL9lpd+A+gM
Pj8AoHPot7z0G0Bn0G8AnUO/5aXfADqDfgPoHPotL/0G0Bn0G0Dn0G956TeA
zqDfADqHfstLvwF0htdff73Mmzev3dMAYBDot7z0GwAA5KLf8tJvAACQi37L
S78BAEAu+i0v/QYAALnot7z0G0BneOGFF6pzUAKQn37LS78BdAafHwDQOfRb
XvoNoDPoN4DOod/y0m8AnUG/AXQO/ZaXfgPoDPoNoHPot7z0G0D//eUvfynf
+MY3huWIdvvYxz7W9nms6bjhhhva/fQDDBv6LS/9BtB/CxcuLLNmzTLaMO67
7752P/0Aw4Z+y0u/AQBALvotL/0GAAC56Le89BsAAOSi3/LSbwAAkIt+y0u/
AQBALvotL/0GAAC56Le89BsAAOSi3/LSbwAAkIt+y0u/AQBALvotL/0GAAC5
6Le89BsAAOSi3/LSbwAAkIt+y0u/AQBALvotL/0GAAC56Le89BsAAOSi3/LS
bwAAkIt+y0u/AQBALvotL/0GAAC56Le89BsAAOSi3/LSbwAAkIt+y0u/AQBA
LvotL/0GAAC56Le89BsAAOSi3/LSbwAAkIt+y0u/AQBALvotL/0GAAC56Le8
9BsAAOSi3/LSbwAAkIt+y0u/AQBALvotL/0GAAC56Le89BsAAOSi3/LSbwAA
kIt+y0u/AQBALvpt8LzzzjvliSeeKM8++2xZvnx5y3+efgMAgFz0W/Ndfvnl
5fzzz1/psosvvriMHj26jBgxohrbbrttmTNnTkvnod8AACAX/dZ8J5xwQjnk
kEO6vr7xxhurZpswYUKZPXt2ufLKK8u4cePKmDFjylNPPdWyeeg3AADIRb81
X/d+22uvvcr48eNXud2uu+5aJk2a1LJ56DcAAMhFvzVf937bfvvty8yZM1e5
3fXXX1922WWXls1DvwEAQC76rfmi3/bff/+ydOnS6uuzzz67nHPOOavc7sQT
TywTJ05s2Tz0GwAA5KLfmi/2iYzj3eJ8JXvssUc58MADywYbbFCefPLJ6vqF
CxeWk08+uay33not7Sv9BgAAuei35luyZEl1XpKbbrqpnHbaaWXfffctY8eO
LXfeeWd1/axZs6q+mzp16hp9jsBLL71UnbuyrxH9ePXVVzf71wMAANpEvw2e
ZcuWVf+N/optcGsq2uyggw7qc4wcObJceOGFzZo+AADQZvqttVasWNHrde++
+241WsX+kwAAkIt+a42bb765bL311tUxbvHZAQ899NAqtzniiCPK0Ucf3bI5
6DcAAMhFvzXffffdVx3ftt9++5XzzjuvbLvtttW+jNdee+1Kt9NvAADAQOi3
5jvqqKPKZz/72a6vYx/KGTNmVE0X2+Vq+g0AABgI/dZ8u++++yrb2sK5555b
1l133XL//fdXX+s3AABgIPRb8x122GHlyCOP7PG6448/vvosgT/96U/6DQAA
GBD91ny33357GTVqVPna177W9ZndtfgMgcMPP7xsvPHG1XFx+g0AAOgv/dYa
F110UfX52aeffvoq1y1evLhMnjy5Oh5OvwEAAP2l31onOu3ll1/u9fpHH320
3H333S37+foNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy
0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl
3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCA
XPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W95
6TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAA
IBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRb
XvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcA
AMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9
lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoN
AABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhF
v+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+
AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf91norVqwor776ann99dcH
9efqNwAAyEW/tcbChQvL9OnTy1ZbbVVGjRpVRowYUY2NNtqoeszPOOOM8tZb
b7V0DvoNAABy0W/Nt2DBgrLFFluULbfcsuq0mTNnlltvvbXcdttt5brrrivT
pk0rW2+9ddV2zz//fMvmod8AACAX/dZ8U6dOLfvss09ZvHhxr7dZunRpmTBh
QpkxY0bL5qHfAAAgF/3WfHvvvXe/uumWW24p48aNa9k89BsAAOSi35rvrLPO
KpMmTerzdlOmTClHHnlky+ah3wAAIBf91nxPPfVUGTNmTDn44IOrbWwPP/xw
mT9/fnnuuefKY489Vu64445y2GGHVec1mTt3bsvmod8AACAX/dYa0WoHHHBA
GTlyZNe5JxvHxIkTy4MPPtjSOeg3AADIRb+11pIlS6qWu//++8u9995bPdaL
Fi1aq/uM7Xvf/e53+xzrrrtu+eEPf9ik3wQAAGg3/dZa8dndvXn33XerMVDR
bxdccEGfY7311tNvAACQiH5rjZtvvrn6jLdoqPHjx5eHHnpoldscccQR5eij
j27ZHOw/CQAAuei35rvvvvuqY9z222+/ct5555Vtt922Og7u2muvXel2+g0A
ABgI/dZ8Rx11VPnsZz/b9XXsQxmf0x1NF9vlavoNAAAYCP3WfLvvvvsq29rC
ueeeW51TJM5lEvQbAAAwEPqt+eKz3Xr7XO7jjz++jB07tvzpT3/SbwAAwIDo
t+a7/fbbq8/m/trXvlaefPLJla5btmxZOfzww8vGG29cHRen3wAAgP7Sb61x
0UUXldGjR5fTTz99lesWL15cJk+eXB0Pp98AAID+0m+tE5328ssv93r9o48+
Wu6+++6W/Xz9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAA
uei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y
0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEA
QC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3
vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8A
AJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76
LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQb
AADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCL
fstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9
BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADk
ot/y0m8AAJCLfstLvwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstL
vwEAQC76LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76bfC88847
5YknnijPPvtsWb58ect/nn4DAIBc9FvzXX755eX8889f6bKLL764jB49uowY
MaIa2267bZkzZ05L56HfAAAgF/3WfCeccEI55JBDur6+8cYbq2abMGFCmT17
drnyyivLuHHjypgxY8pTTz3VsnnoNwAAyEW/NV/3fttrr73K+PHjV7ndrrvu
WiZNmtSyeeg3AADIRb81X/d+23777cvMmTNXud31119fdtlll5bNQ78BAEAu
+q35ot/233//snTp0urrs88+u5xzzjmr3O7EE08sEydObNk89BsAAOSi35ov
9omM493ifCV77LFHOfDAA8sGG2xQnnzyyer6hQsXlpNPPrmst956Le0r/QYA
ALnot+ZbsmRJdV6Sm266qZx22mll3333LWPHji133nlndf2sWbOqvps6dWpL
P0dAvwEAQC76bfAsW7as+u9LL71UbYNbU/G5AwcddFCfY+TIkeXCCy9s1vQB
AIA202/DT/RfNFxfI/bfvPrqq9s9XQAAoEn0W172nwQAgFz0W176DQAActFv
zbfbbruVMWPG9Gscd9xxLZuHfgMAgFz0W/P9/ve/L+973/uqc05edtll5Yor
ruh13HPPPS2bh34DAIBc9FtrzJ8/v9q+dskll7RtDvoNAABy0W+tc/nll1cN
tWjRorb8fP0GAAC56LfWic/mfvDBB8srr7zSlp+v3wAAIBf9lpd+AwCAXPRb
XvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcA
AMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9
lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoN
AABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhF
v+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+
AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy
0W956TcAAMhFv+Wl3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956TcAAMhFv+Wl
3wAAIBf9lpd+AwCAXPRbXvoNAABy0W956beh4Z133il33XWX0YYxd+7cdj/9
AABNpd/y0m9Dw8svv1wOP/zwYTkmTpxYNt9887bPY03H6aef3u6nHwCgqfRb
XvqNtTVv3ryy/fbbt3saAAD8k37LS7+xtvQbAMDQot/y0m+sLf0GADC06Le8
9BtrS78BAAwt+i0v/cbaevXVV8uVV17Z7mkAAPBP+i0v/QYAALnot7z0GwAA
5KLf8tJvAACQi37LS78BAEAu+i0v/cbaWrp0afnb3/7W7mkAAPBP+i0v/cba
8vkBAABDi37LS7+xtvQbAMDQot/y0m+sLf0GADC06Le89BtrS78BAAwt+i0v
/cba0m8AAEOLfstLv7G2Fi9eXJ555pl2TwMAgH/Sb3npNwAAyEW/5ZWt3157
7bXy17/+1TA6Yrz77rvtXuQAgCFIv+WVqd9ef/31MmLEiPKRj3zEMNKPzTbb
rEyYMKHdix0AMATpt7wy9dvChQvLhz70oXZPAwbFo48+WsaNG9fuaQAAQ5B+
a70VK1aUV199tdqGNJj0GwxP+g0A6I1+a43ojenTp5etttqqjBo1qtr3L8ZG
G21UPeZnnHFGeeutt1o6B/0Gw5N+AwB6o9+ab8GCBWWLLbYoW265ZdVpM2fO
LLfeemu57bbbynXXXVemTZtWtt5666rtnn/++ZbNQ7/B8KTfAIDe6Lfmmzp1
atlnn32qz87qzdKlS6vzE8yYMaNl89BvMDzpNwCgN/qt+fbee+9+ddMtt9zS
0nU0/QbDk34DAHqj35rvrLPOKpMmTerzdlOmTClHHnlky+ah32B40m8AQG/0
W/M99dRTZcyYMeXggw+utrE9/PDDZf78+eW5554rjz32WLnjjjvKYYcdVp3X
ZO7cuS2bh36D4Um/AQC90W+tEa12wAEHlJEjR3ade7JxTJw4sTz44IMtnYN+
g+FJvwEAvdFvrbVkyZKq5e6///5y7733Vo/1okWL1uo+Y5tetFlfIzrxnHPO
adJv0l7Rb5tttln1+BlG9hHL+G677dbuxQ4AGIL02/CzbNmy6rPj+hqx/vf7
3/++3dNtiui39ddfv8dtmYaRcXz84x9v92IHAAxB+i2v8ePHV8feZaDfjE4b
+g0A6Il+yytbv2244YZl5513Noz046Mf/WjZfvvt273YAQBDkH5rvthvMc4/
2Z9x3HHHtWwe2frN+UvoFM5fAgD0Rr81Xxxz9r73va+MHTu2XHbZZeWKK67o
ddxzzz0tm4d+g+FJvwEAvdFvrRGf9xbb1y655JK2zUG/wfCk3wCA3ui31rn8
8sur8/iv7ecFrCn9BsOTfgMAeqPfWmf58uXVZ3S/8sorbfn5+g2GJ/0GAPRG
v+Wl32B40m8AQG/0W16Z+u2ll16qPhNr2rRphpF+7L///mWzzTZr92IHAAxB
+i2vTP0W5syZUy699FLD6IjxwgsvtHuRAwCGIP2WV7Z+AwCATqff8tJvrK04
B88bb7zR7mkAAPBP+i0v/cbamjdvXtl+++3bPQ0AAP5Jv+Wl31hb+g0AYGjR
b3npN9aWfgMAGFr0W176jbWl3wAAhhb9lpd+Y23pNwCAoUW/5aXfWFvvvPNO
+cMf/tDuaQAA8E/6LS/9BgAAuei3vPQbAADkot/y0m8AAJCLfstLvwEAQC76
LS/9xtp6/fXXy2233dbuaQAA8E/6LS/9xtry+QEAAEOLfstLv7G29BsAwNCi
3/LSb6wt/QYAMLTot7z0G2tLvwEADC36LS/9NjS89tprZerUqcNyHHfccWWz
zTZr+zzWdPzgBz9o99MPANBU+i0v/TY0vPnmm2XmzJlGG8Ydd9zR7qcfAKCp
9Fte+g0AAHLRb3npNwAAyEW/5aXfAAAgF/2Wl34DAIBc9Fte+g0AAHLRb3np
NwAAyEW/5aXfAAAgF/2Wl34DAIBc9Fte+g0AAHLRb3npNwAAyEW/5aXfAAAg
F/2Wl34DAIBc9Fte+g0AAHLRb3npNwAAyEW/5aXfAAAgF/2Wl34DAIBc9Fte
+g0AAHLRb3npNwAAyEW/5aXfAAAgF/2Wl34DAIBc9Fteu+66a/n+979frr32
WsNYo/Hd73637LnnnuXoo482DGMIj0MPPbTsvffebZ+HYRirHwceeGD133b/
fTeG99hiiy30W1KPPPJI+cY3vlGmTp1qGGs0jjjiiDJ69Oiy4447GoYxhMdW
W21VNtxww7bPwzCM1Y/NN9+8Wl7b/ffdGN7jsssuK8uXL293agBD0Lx588oO
O+zQ7mkAfbjnnnvK5z//+XZPA+jDVVddVb797W+3exoAJKXfYHjQbzA86DcA
Wkm/wfCg32B40G8AtJJ+g+FBv8HwoN8AaCX9BsODfoPhQb8B0Er6DYYH/QbD
g34DoJX0GwwP+g2GB/0GQCvpNxge9BsMD/oNgFbSbzA86DcYHvQbAK20ePHi
Mn/+/HZPA+jDW2+9VV544YV2TwPow2uvvVb+/ve/t3saAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ86SJUvK8uXL2z0NYDUsozA8
rFixot1TABhWvv71r5dPfepT7Z7GoLnrrrvKiBEjyssvv7xG3//Xv/61vPe9
7y2//vWvmzwzWL2NN964XHLJJe2exqBZk2X17bffLmeeeWbZfPPNyzrrrFM+
/OEPl+9///tl2bJlLZwprKzTltXjjjuu7LPPPgP6nqVLl5Yrrrii7LnnnmX9
9dcv++67b3n00UdbNEOAXG688cYyY8aMdk9j0KxNv0W77bjjjtX36zcG28kn
n9xRr7s1WVZPOOGEsskmm1TN9sgjj5Rzzz23jBo1qpx//vktnCmsrNOW1TXp
t5kzZ5axY8eW6667rjz88MPlS1/6Utlggw3KM88805pJAjBsrWm/XX/99dXf
lk984hP6DQbBQJfVf/zjH2XkyJHlrLPOWunyo446qrz//e9vxRSBMvB+e/fd
d8tmm21Wpk+f3nXZm2++Wf2NjfdeADpdrNNMnjy5fOADH6jel95///2r96Vr
3/ve96p/e0O8Bxb7Mjz99NNl4sSJ1e0PPPDAarvTE088Ue3fEPczderUsnDh
wtX+3Hhv7eMf/3i1X8TOO+9c7SfRuI973OeRRx5Zttpqq/Ke97yn2ofzpz/9
adf1F110UTnvvPPK7Nmzy0477VTtDxU/N+7j2muvrTpqhx12qO63FvPfbbfd
yh/+8Icyfvz4aj/HY445ppp7rad1wj//+c/V7xm/70c/+tFyzjnnVPt2NPrQ
hz5Uzj777Gre+o1WeOyxx6plLJaHrbfeukyaNKm8/vrrXdfvt99+5aabbqr+
f7OW1b7+fQi/+MUvyt57711dH7c7+OCDy1/+8peu6wdzWf3v//7vsssuu1SP
0R577FHuvvvuruvisbrhhhuqx6DRtGnTypgxYxxjQ9NYVldeVnvqt9Utq+G1
114rb731VtfXCxYsqLaVX3rppX0/AQDJHX/88VUjzZo1q9x5553lgAMOKOut
t15ZtGhRdX3j8W9z5syp3r/eYostqn0qL7/88up96+ivj3zkI9VxJfFv/IYb
bli1TG/i3+lY74p9lu65555q/Sm+jr8ZIf4OxfEB8e/9zTffXH784x+XT3/6
09VtoqXCiSeeWP39ib8nse3rlFNOqa7/zGc+U7bffvtyzTXXVPuoxGVPPvlk
1/zj65jzlVdeWebOnVsOPfTQ6vepf9/u64Txty3W7Xbffffq722s/2266abl
y1/+8kq/06uvvlr9N/6+6jeaLY7bivWieL3Gchrvf8S6Vax/1RqPqWnWstrX
vw9xWbzev/nNb5Zf/vKX5YILLqjeN49lsDZYy2qs18X63bHHHltdd/rpp1fH
uP385z/v9feLc5jEey+xrgvNYFlddVnt3m8DWVbjvdLf/e535ZBDDqkexxde
eGEtnh2AHOLf+9ieVPv73/9e/Rs+b9686uvu/Rb/Tsc2udp3vvOd6rLGY7Hj
7028d9eb6LXYjtUojkP52c9+Vv3/3/zmN9W2ub/97W9d1z/33HPVz/nRj35U
fR1zjK/nz5/fdZttttmmuqzx/fU4P0G8p9jb/BcvXlz9vYo5he7rhF/84her
v8Vxu1r8jYnbNL6/WNNvtEK8n9+4zhRiHSyWtXq7Ufd1wmYsq339+xDrXYcd
dthK33PxxRdXP+eNN96ovh6MZTV+1kYbbVSmTJmy0lzimJnu/9Y0iv2zYt05
Hl9oBsvqqstqY78NdFn94Q9/WN1/43u8AJ0u9nOI9+jifbb4dzjOfd+op36L
98JqsU9j43axEPtWxDar3tTvA8a+InF+lFdeeaXX28b+E/H3MN73i/Wsq666
qro8/s50P2Yl/jZtt912K10W+3P8/+3dPW4TXRSA4Y4tUNDRUCJKOip2gAQF
FQ0dFUKiQiBWgCgoaFgCEoKGlr+GRdAgNkCDlE/voJtvPJg4IXEgyvNIVhw7
nowtn7k/c86d1iyY7/8yf6rclmvXrk33l+O3zrW13XJExu39+/fTvlRXvWT8
xjY0pz9yseonzeNtWNcnPGysbjo+zH379m3n3bt3O3fu3Jn+T7/nOGK1Of/u
d3yYx2rn+Ht8nB+fe/r06fTc8+fPf/ue4KDE6k/zWJ2P3w4aq1+/fp0+h+pW
e3/FLcBpV01wOQwdFzt2Ni/WnPS4NtK68duXL192X//q1avpsbYzdFzeq50Z
f1PuRq9tLHT9+vXpOD1//uLFi1NORTVyjfW6X35GameuXLmyss3q5drOXLn+
y3Zm2a7VLjR3mXmf8Pv377vzfutuy3UQYvzGtjSPUR7v+P5dunRppWZkXZ/w
sLG66fhQflTz6NXT9Pz58+d3rl69Ot0ftTrHEavlWe8Vq9XmzI2c7eb24aiJ
1dVYnY/fDhqry30ph1KtKsBPneeqtvn27dsrc9Lrxm/z/PM/Hb+ldqX66nL6
a2uqYU51zY3VyhdpXq7898ZSPTbqpmtnah/n9tvOLOf37t69u1v/Mu8T1kb0
Pkbey/K2jvEb21YdfzU1XauiuY8x772uT3hUsfq748ONGzd2zp07N+U1l+Oc
0T+b9wm3HaujprbrQ22K1eK5z61aVtgmsfozVufjt/3EajXwtaH9nCvnpdfO
53oBTpty1MuNePPmzcrjnfdqHi/bGL89e/Zs5/79+yuPNYY7c+bMNKar5uzy
5csrzzeOm7dFh2lnatuG/l/v99GjR9Pvy/zJ1tW6cOHCSh+w689Uz90+LRm/
sQ2fP3+e1qxrTbah+pq+a31nc9R9wk3Hh+bb65M+efJk5fmHDx9O/6e+a44j
VusXN79Tjc9cazB0fYBRv9r5tvb59evXa98zHJZY/TVW5+O3/cRqbWzbrK8w
17oo5eOMc4oAp1XH62qGP3z4MK1vXN59x9YxN30U47eXL19Oufld02W+ndbJ
qo1rHNSaxOVIjtfX1nz69Gk699bz1RL0mtH+HKadqR67tUd6vw8ePNg5e/bs
7rzocvxW3Xm/l8tfHXjtcGthNp/648ePXz5P4ze2ofPPrQdQX6y+TTF47969
aQ23Me99FH3CZaxuOj4UX503r//XdpvbL3b7P2Nd8uOK1daE7Xq/zfFUU/v2
7dupr9eafik2+719aT+Xt+U1QeBPiNVfY3W5/uSmWE1j4D7HztdVn9d6me3v
/G8ATqvyEDrfVXvSMbhjaGtY7VX/dtB2ZtSazK/lUl5+bc2of+t81ljHpPWp
bt26NW2jNq86udqi8j9aQziHaWceP348nevrfuPGjx8/7v79umtK1c7VFvV4
+3Tz5s21a0/G+I1t6bvZ97mY6DvW+tytpTMcRZ9wGaubjg/FTn3C+ontV320
zj8U0+P6VscVq72vrn81Pp/qZDp+jf7tixcv9qy7mX8ucBhidTVWl+O3TbGa
1s/smgsjPtt216YzzwLwv47xzZUdd15C453W61qnecxN1wE/iHk7WY7GQbfd
9Qzm7Qv8DfV96tscp03Hh8ZQRzn+OUyslivWvlrjgL9NrO5tP7Ha+bzOYxq3
AZxO6+Y5gX+PWIWTQawCsE3aGTgZxCqcDGIVgG2qTqDrgMrDgH+bWIWTQawC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAADAv+0/Zwp0vQ==
"], {{0, 775}, {880, 0}}, {0,
255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
BaseStyle->"ImageGraphics",
ImageSize->Automatic,
ImageSizeRaw->{880, 775},
PlotRange->{{0, 880}, {0, 775}}]], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
CellChangeTimes->{
3.690021611902296*^9, {3.69002167814474*^9, 3.69002167945828*^9}}],
Cell[TextData[{
"From the box plot we see that ",
Cell[BoxData[
FormBox[
RowBox[{
SuperscriptBox["y", "*"], "=",
RowBox[{"(",
RowBox[{
SubsuperscriptBox["y", "1", "*"], ",",
SubsuperscriptBox["y", "2", "*"], ",",
SubsuperscriptBox["y", "3", "*"]}], ")"}]}], TraditionalForm]]],
" are centered around their expectation values. The Q-Q plots are as follows:"
}], "TextNoIndent",
CellChangeTimes->{{3.6900218444439163`*^9, 3.690021921219953*^9}}],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
SubsuperscriptBox["y", "1", "*"], TraditionalForm]],
FormatType->"TraditionalForm"]], "Item",
CellChangeTimes->{{3.690021927623434*^9, 3.69002193268919*^9}}],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzs3QlsVGX7/38U5E8wBkI0Nm0gQGiAAGEJYNSIYFgkrPKTVYiyihsIoogi
7gsogogoIBQBAb/IIosWREAE2WVRCw9lqSyyFihbaQu9/t/rfn5nfqftdGVm
zsw971dyHjrnnDlzzbSPPZ/eW7V+Q7sMur1UqVIvlfvf/+nSd2SL4cP7jvo/
Zf73wSOjRgzsV/p/v/j//vd/XvzfTXcKAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqHDlyREaPHi0dOnSQ
e++9V2rXri2dO3eWb7/9VjIzM3Ocm5qaKl26dDHb4sWLPao4cHXcvHlTDhw4
EMDK/mv69Om++rKzsws9vzjfg3Dnfu/6+QaKXuuTTz6Rhx56yHxGrVu3ls2b
Nwfs+gAAAEC4++2336RSpUpSqlQpv9vDDz8s169f953/77//+o5NmDDBs7oD
Ucfu3bvlkUcekSFDhgS4OpGXXnrJV19hGaa434NwV5z3XhxTpkzJ89n88ccf
Abs+AAAAEM60Xah69ermPrhixYoyfPhwWbhwoYwdO1bq1q3ru0f+6KOPfM85
f/689O3b12wrVqzwrPZA5Dfn+V7mt5J8D8JdsPLbk08+aa5ZunRp+c9//mN+
BrKysgJ2fQAAACCcJSUl+e6zv/jiixzH/v77b9+xBx98sNjX1vaiM2fO5Nl/
5coVuXDhQolrdhSW3zQ36Otrv0Tta+lPUfKb1nvq1KlC67lx44acOHHCl1eK
mmFu9Xtw9epVSUlJkePHjxe5je706dN5+mRqjjx58mSR85Z+pvra/hT23vW1
9LNKT08v0ms5mjdvbq553333FXievr/86N8fLl68WKzXDcTnBQAAANyq5ORk
33229iM8evRojuPbtm2T7du3m4zh0Cxz5513mm3y5Mlm37p163z79Jr9+vWT
MmXKmOtqG9Jff/1lspSOh7r99tvltttuM/fgeq7b888/b64RFxeXY/+OHTt8
11+2bJnZV1B+07ruvvvuHP3s6tSpI1u3bjXH9f3otZxj2p6jj+fOneu7hvat
1Mykteo5er133nlHMjIycryWZpBXX31VypYta86rUKGCfPnllzJs2LAi5beS
fA+U5tL27dvneI933HGHab9z19imTRvz3t544w356aefpEaNGuZcrXfUqFGm
tnnz5klsbKyvDfDdd9/N8VqDBw821+jRo4fs2rVLHnjgAXOufi87depkvhdu
+eU3rUuvrZ+R8/xmzZqZz7ogW7ZsMa+v5zvP08f62vpc52fj119/lUaNGplz
atasKWlpaeb5mmvfeustadKkia8u/RwSEhLyfG8C8XkBAAAAwaD3ou57Ws0q
2sahc0RoZtA2pdz85aY1a9b49lWrVs3cX1epUsW375577jH3wXp99ziv+Pj4
HG1GAwcONPv1/tlNM4zznCVLluRbh1q/fr1vf/ny5c08F85jzZSaezRP+htn
pvfzzus5WUE3d806p4hbr169cnx+TjZx8lxh+a0k3wN9js7d4TxH+1+669Xs
6NC5PnRf1apVzb/6ebhrc7JY7rzrzrJPPfWU7xr6mTqfpXNu5cqV5dKlS77z
88tvXbt29e3Xz8mpWfPz77//nu9ntGnTJr/fr1atWpk86Tx2/8y1bNnSPFcz
Y7du3fw+Xzftk+kWiM8LAAAACBZt/3HGX+XedP+iRYtynF9YftPnOP0NdT5F
Z7+2V2gfP72f1nY2Z7+7DS4Q+W3o0KHmnlvbinRslPZzmz17tu9cfT9ag7Zz
Oft0LJ8+1gyiecO5R9d7eG330gz1zTff+M7X9kal7XnOvrZt28qhQ4dMn8KJ
Eyfm+BwL62NX3O+Btkc2bdrUZCj9bJT286xVq5av7cnh5BHdJk2aZGrRfn/u
TKJj63S/vlfNUrpv0KBBvms4+U23du3amfPOnj0rI0eO9O0fN26c73x/+S0x
MdG3T9urrl27Zn4enPq07TE/+v3Snylts9VzNe/qY+3D6c5vuun3Sb8/Gzdu
NM/VdjR3rtX8rnOePP744779Ot4wkJ8XAAAAEEyaOb7++mvTnuEvQ0ydOtV3
bmH5bcaMGb5z3ffs48eP9+3XeU+c/dpe5ghEfnM481pov82ZM2f6znXa2JSz
zz3+Te/vnf3a586hGc7pM/fMM8+Yffq6zrkrV67M8fqar4qa31Rxvge536OO
zdIc06JFC1/blsPJI7rPXYdTn7b3uftbNmzYME+ecuc39/dLPxOnf6HOkenw
l9+effZZ81jb3HQMmsOdrQ8fPlzgZ6Svoee5xwK681ufPn3yPMfJtDExMTne
v2ZH53mPPvpoQD8vAAAAIFS0TUOzSO/evX33t9r24NyzFpbffvzxR9+1tB3E
2b9gwQLf/rVr1/r2r1692rffyW/aR89Nxz8VJ7/p677yyiumHSp3DtIs5/CX
39w1a9vX/fff79ucMXPa1qZeeOEF37m558TQ9pji5LfifA+Uzqkxbdo0MwbM
3Tak21133eU7z8kjjRs3zvEaTtbTPoduTkbSNkiHk990fF3uOUd69uyZJzP6
y2/O62mbofszdc+xqf0kC1JYftP2Mjd3RnP3KXXodZzPy1mjLxCfFwAAABAM
uu61zsnQv39/31wPbnrMuf/VPnuqsPz2yy+/+J7vHoumbXGOwvKb5gS3DRs2
FDm/ufvL1atXz8w5ovNNFLX9zd1m2KBBAzOfRe5N61T6POfc3POauMd6FZTf
SvI90P6Wzlgv/aw0582aNUu6d+9u9umcGg4nj+g8IW7aXqT7tV3JrbD8lnst
cie/6RhBh7/85rRfadb095nqpuvgFaSw/KZ9J93OnTvnO/byyy/nuZ67rS13
fruVzwsAAAAIBh3H49zf6pit3Jw+b7rt2bPH7AtmfnPnIfd87d9//32R8pu2
STn7dGyWY//+/X7v8Z192o7mcM9tkntewdzrEHz22We+c3Wuf4e2URV1/pKS
fA+ccWf6GseOHfOdq/N+6n6dW8NRWB7JPRd/QflNN113zaHvq3bt2ma/tk85
/OU3py1Rx4u514/QcXtFXfegsPw2f/78PM/ReUf1mM5p6v4+uH9+/PWfvJXP
CwAAAAgGnXvdmR9f+5BpltB9Ohfge++95zvmvvcNZn7Tef9zn6+ZyZkTvrD8
5h4n555PY8yYMb79U6ZM8e135lB87LHHTPuZtn/pmDJnzJTOX+KMyXLmKtF2
Jm3Pcz4/57odO3Y085/opm1+zv7C8ltJvgfaZ1L3aT9Tp81Oc5y2u+l+fV+O
QOc3fW19TX2fH3zwgW//xx9/7DvfX3777rvvfPt0bXL9vPWYfvY6Jk5fV7Nc
QQrLb/oaubnXcXj99dfNz82+ffty9E31N38J+Q0AAADh6MMPP8yRNXJv2mfu
hx9+8J0fzPym+cvJK7pp/0W9t69fv36R8pvmCmeuf72OZg2nfci5rmYrR+55
+53r6Ngz93z82mfOeaxfu8eAPf30077znHXk9GvndQvLbyX5Hrjnt9S5+7Wv
pmY292fnzOcfyPymn4G+jr5PZx0Bp4bLly/7zveX37Q91Vl/28mj7vn+ne9r
QUqS3/Rz0L6Zzjnu76tumuPcyG8AAAAIZ3p/rffOTj8zZytXrpxZQ0vnWncL
Zn5Tuo6Wk8E0t+i4MPc8FIWNf9M5MNxz8esaczoniTMeTecLdGhN+j6d/Pb+
++/7jm3evNm0+zmZSOcvfO6558waAW7ajqRj1Jx55HUslc4VqePRiprfivs9
0Nd0z52imUT7nrrnXtE5PlUg85v2y9y5c6dvzkndNBvp98ctv/XfNPfq+uLu
9bv1/em8m0VRkvymdG7PESNGmJ8F51xdk/Crr77K870hvwEAACBSaFuF9i3T
vnjFnTMxkPS1dR7/oo6Lyk3ntU9JSTEZrzD6GjofSH599/TeX/tQFvZ56HU0
2/lbb7s4ivM90PbGAwcOlPhzKip3fnPoennudQCKQ+cK0ee7x8GFyokTJ8x6
bgAAAABgI3/5DQAAAAAQfshvAAAAABAZdJ7J1q1bmzGEAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAADAe3///bf07t1bKleuLPXq1ZMhQ4Z4XVKRzZkz
R7p06WK2LVu25Dn+n//8x3d8x44dHlQYWKmpqb73s3jxYq/LCZrp06f73uet
rAt//PhxuXz5su9xuH1+GRkZUq5cOSlTpoxvbfImTZqYx+vWrfP7HN3/yCOP
mO3atWshrBYAAABeu3r1qtxzzz1mrS5ni6Q53998801f3Q0aNDD3w27bt2/3
HV+9erVHVQbOv//+63s/EyZM8LqcoHnppZd877Mk+U1zzaeffiply5aVo0eP
+vaH2+e3d+9eU0utWrXMY82at912m9l3+vTpPOefOHHCrKnnvIcrV66EumQA
AAB4KCkpyXcvOGLECDl37pycPXvW67KKzJ3fdJs0aVKO4+S3yHSr+U1/Dpzn
u/Pb+fPnpW/fvmZbsWJFIEsukW+//dbUOHDgQPN427Zt5nG1atXynHvgwAF5
6KGHcvy8k98AAACii/bFcu4FExMT8z1P2wW0rc4fvb/WfmrFuc++fv26nDlz
Js9+vR91+pEVRe78lru9pSj5rST1+2sbyX08MzMzx77s7Gw5efJkga+jx/Rz
OXLkiOnrl9ut5je9vl5DaymMZp2LFy8G5dqFKSy/6c9iSkqK+b7pz1Ju+eW3
oirue9f3rO899/fcH/3Z+Pnnn83Ws2dPU+PgwYPN45EjR5rHzZo1y9F/8vXX
X5fbb789x886+Q0AACC6PP744ybvuLPPnXfeKZs2bZInn3zSfD1gwAD5+uuv
zb2jjsn58ssvfc/fuHGj9OrVSypUqOB7frdu3cx9tZveh+q1dEtOTpZ+/fqZ
a+lz6tatK3/99ZfJLDomSV9H+4/dd9995tzC5M5vuvXo0cN3vKD8VtT6d+/e
7av/119/lUaNGpnza9asKWlpadKmTRtz7I033pCffvpJatSo4bveqFGjTP6Y
N2+exMbGmv0VK1aUd999N897mTx5co6+cbrVqVNHtm7d6junOPlt//79vro3
b94sr732mnltfa6+zjfffJPnOZqF3nrrLTMGy3kdfT8JCQk5clRxr33w4EHf
+bmP6fdL9zdt2tS3L7/8prm2ffv2OT6jO+64Q4YPH+7rO6ttWc7Pl246vqxq
1arm2KlTp3x16OddkveumdG5xvr162XixIkSExPjq0VrL2hc2qpVq/L8zPrb
7rrrLt9zSpcubf5/8corr8gzzzxDfgMAAIhCbdu29XvfuGHDBpNj9Ou4uDjf
eBzdNL+o3377zdyr+nu+3i/v3LnT9zpr1qzxHdN+YZrRqlSp4tun4+/0Pllf
p1KlSr798fHxfttW3Nz57YknnsjTlphffitO/bt27fIdc9fdsmVLc9zp06YZ
Qf+99957c+TiBx54wJdr3K8zd+5c32toDnD2ly9f3lzDeaxZRHOLKk5+c/eN
1XlpnGu5a/jqq69852v+cb7v/jbN9CW9tmZxZ/+MGTNy1NmpUyezv3bt2r59
/vKb/tu6dWvf/urVq+dokxo2bJg5T+fiyV27ZsuCPr/ivPdjx4759jtZXv9/
4q5l7Nix+X5f9Gfysccey/H/v86dO5t9mtP0cYsWLczPs6NDhw7m7xzK/TNP
fgMAAIge2j9v4cKFvnvB7777zrRP5L6Xbdeunfz++++mHe7GjRvmHCefaBvU
kiVLzLV0zkBtM9D9DRs29GUvd37Te259vho9erRvv7ZNabuGvvbzzz/v219Y
G5z7Xlafr9nLeR3tY+cvvxW3fnd+003bj7RNUdvvlHtMkvbb05yh/STdGe6j
jz4y+zX3OPfogwYN8r2PoUOHmsymbVFZWVmmP97s2bN9z1+0aJE5r6T5TbPx
rFmzzGfyyy+/mGys+/X9al9Bpe2H7iykmfGPP/4w7bTOfv15Kcm1A5HfdP5Q
baPTnKjjxJTmF537w/leKm3L1XY05/naPqg/GwV9fsV57+78pt9L/XuH8x6d
nz/N7IVxfq6c962fn/O3Eudz84f8BgAAEL3Wrl3ruxfU8TcOd37T9QXcdN51
55jet7vpva9zTPthKnd+c9+7axuZs3/8+PG+/TqvhLNf26UK4r6XVdrm4zx+
5513/Oa34tbvzm99+vTJU4OT37QfprufnWYNJ9+458XUbKj7df733DS7Kc0g
M2fO9L2u9uFTJc1vuV9rwYIFvmP6M6CcHKR9AXP3F3TOffTRR0t07UDkt9yf
kY410++NtlU5n78jv/Fv+X1+xXnv7vz23HPP5ajN6dup7bSF0b8D6LnO3CWa
T/WxMxdlfshvAAAA0auw/KbtC9rm5ubOOE67hkOvkfs+3Z3ffvzxR9+57rlT
9J7fX02FzRmZO7/pvb2OndPH2p9N81nuaxW3fnd+yz2/pXLyW+PGjXPsd3JF
7nv5hx9+2G8bjX4eOr5J25Gc13M2zXKqpPkt97l79uzJcW13TnH6Ibo9+OCD
vjY1bRsszrWVO79pO66b9g0san7TuT+mTZtmMp+7fdOpzVGc/Fbc9+7Obx9/
/HGOc50+vNpXNj+HDx+WL774Qlq1amXO1feij/v3728e169f3zzW9mB/yG8A
AADRq7D85u8+VOeqcJ6j/QTd/LW1ufdp/zqHe8yXe+7LW8lvymnH0M2ZU8N9
reLW785v/ub8cPKbzhnopu1Sut89L4fyl9/c/fd0PJm2HeqcJ86+W21/mzJl
So5j7oyl19Z1I5zHL7/8cr7vUdu4cue3wq6t3PnNPS5OOTmmsPym13DGH+rY
RR3npvm8e/fuvu+1ozj5rbjv3Z3fcud5HSdXWH4ryfwlbuQ3AACA6FVYfqtc
uXKe5yxdutT3nDlz5uQ45r7v9td/MhT5Teladrnvh/W+uST1u/Pb/Pnz89RQ
WH7T9kC33PlN25Sc6+v88Q6d4zF3bixpftO2HTcdT+ccc+ap17ku9bHOxeFu
83K/pr/+k0W5tmYoZ5+7r6xyxssVlt+cufW13U0zlEPnM82dmdz57Z9//vH7
XtyfX3Heuzu/ff755zneS1Hy2759+3L8fOo4UP051vks9bGuJaCP33//fb/P
J78BAABEr8Lym791hPX+1ZlrT9uKNHvp3Au6FrHT3tWgQQO/85eEKr/pGnLO
nO6581tx63fnN53jJbdbzW/Oms26jRs3znfemDFj8rRxlTS/6ft1z8mpffSc
NiVnvT13v1Jdb0xfS7OGez5Hf/OXFOXa2gfXme9T37+OXcs9R0th+c0ZJ6fz
c+q6Dc730vme6bwmDl3nwnm+fr7axlbQ51ec936r+U05bcTuuUucn0nnveWH
/AYAABC9SpLf1LJly3LMl+7+WttH9P7U4UV+U+52IHd+K279wc5ver/urJug
c51oTtH7euex/qv9KVVJ85szVsy9PoNu7r6Mly5dMmvZ+ftMdNMsU9JrK50j
3zmm+UZ/tvT96RqARclvus6as0/bhbt27Woym3t9C30PStfhc/bpcX0vOjYy
v8+vOO89EPlN+5Xqec4cpDrXpfP3hMKQ3wAAAKJXSfOb0iymaws47Sp6z6tz
URw6dCjHeV7lN23f6dixo9/8Vpz6g53flPbV1DUPnNfRPoXa91Azij7WOStV
SfObzvmhc6M4uUTbsHLPA6m0HUj79jl9GnXT9fk0i7n7FZbk2jonvvZBdPKW
voZ+399+++0i5Tedw/OFF17IkbGGDBmSYx4cnbtUpaen+9rrdNO2QG2DK+jz
K+p7D0R+c97H1KlTzWOnHVLX5i4M+Q0AAAC3Qu+rdW6JwtbaDlfhUr/2MUxJ
STEZIxDcGcsZP6cZRfNp7jlF/Tlx4kSe+V0Cce2LFy/mmfezOLS98sCBA0X6
fmn9OvZOs3xxFPTeA0Hr178LOP1L9fPQx/q6AAAAAKKPv4wVCdcGAAAAgGhD
fgMAAACAyHDkyBFp3bq12dzrpof7tQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACJJamqqjB07Vnr27Cnx8fFSvXp16dGjh3z00UfmWEmtXr1aXnzx
RWnevLncfffd8vDDD8vQoUMlMTGxyNfQdbS7dOmSY3v88celV69eMmjQIBk/
frxcunQpx3OmT5/uO/fmzZslrl/pmtWXL1++pWsAAAAAQCDovPoxMTG+ddJy
b3qsuHPva+YbMGBAvtfUrX///kXKhmfOnCnwOrrVqFFDtm7d6nvOSy+95DtW
0vx27do1+fTTT6Vs2bJy9OjREl0DAAAAAALljz/+yJGDtF1r8uTJZtOvnf23
3Xab7Nq1q8jX7datW478N3r0aElISJA33ngjR1bs3r17oddy57f69evLmDFj
5PXXX5dhw4ZJtWrVfMfuu+8+33MCkd8mTZrkuwb5DQAAAICXNNc89NBDvowy
Z86cPOfoPud4s2bNipSFtG+k85wHH3zQ5C83faz7nXO0j2VB3Pnt6aefznEs
PT3d1OUc176Oqij5Tffr+fkdJ78BAAAACBebN2/25ZPOnTvne16nTp1857n7
KOanffv2vvO3bdvm9xy9jnNOx44dC7xeQflNaR9H5/iyZcvMvoLy28aNG83Y
uQoVKpjj2j9S2wtTUlJ85wwcOFDKlCnju0a5cuWkatWqhb53AAAAAAiGb7/9
1pdPvvvuu3zPW7Bgge+8+fPnF3rd2NhYc672bSxIlSpVzHmVK1cu8LyC8ltG
Roa0bdvWd/zvv/82+/PLb7/99pvccccdfsfQaUbbuXOnOa937955jlesWLHQ
9w4AAAAAwfDWW2/5ssmmTZvyPU/bq5zz3n333QKvmZaW5jtXc1VB2rRp4zs3
9/yRbu781qRJE9PeNm7cODOWrmnTpr5jmhuzsrLMc/zlt1OnTpm2Nt1Xs2ZN
WbJkiZk/ReeqvOuuu8z+hg0byvXr181ruj8fbat0+mYCAAAAQKiNHDnSl092
7NiR73nbt2/3nffaa6+ZfSdOnJD169fn2Hbv3i2nT5/2natz9xdE+2w65547
dy7f84oy/6TmMvf8Kv7y2+LFi337Zs2aleM1dC6U3FmW8W8AAAAAwsXXX3/t
yyc//PBDvuf5yz3uvpfuMXTZ2dly5513msf16tUr8PVr1aplztN14Qrizm+V
KlUy85XoOnKtW7c269VpW9zJkydzPMdffnNntNxtaT///LPv2IwZM8w+8hsA
AACAcLF27VpfPtG2OMeVK1fM+gFXr141j59//vk8bVP55Tel2Uof33777fLv
v//6rqtzizjjy44cOWLWJNDzHn300QLrLGz+En/85TdtO3T25c57a9asIb8B
AAAACFs6Vs2Za6R06dKSnJxs9ut4MN0XFxcn48ePNzlMH99zzz3mOUrzjK4T
4N60n6XS7OfkHs1+2ian84zce++9Zt+TTz6ZY304zUkFCVR+W7p0qW9f7rUS
3Of76z/5zz//FP2DBQAAAIAgWLhwYY6+iTq/ZFJSkgwfPjxP+1pR5p5UmtV0
nW3neZrXdB0BXeetevXqOa5Zu3ZtM19IQQKV344dO+bLotq3UzOntjFqW6LO
Lan7GzRo4Kvnyy+/9F1D6y9ojB4AAAAABJu2jb366quFzg+i29SpUwvNWo49
e/aYOR4Lu2bz5s19c/7nJ1D5TWkfTifDOX083XOguOdx+emnn3zHtK+nnuvM
bwkAAAAAXtH58XU+EF0Dzcksur61rq2tbWTOPs1k6enpRbqmtm2NGTNG4uPj
c+QgbePq2rWrb/ybv/6MboHMb+qXX36Rdu3a+daB01zWoUMHOXToUI7z9H26
1y7Xz4M2OAAAAADhQrOOzs2YkpLiyz2aw3StNc05I0aMKNF1dU6U/fv3y+XL
l337tm7darJcmTJlTN/GUNN+njrmr7A2RZ3rRMf7aVslAAAAAEQCXf9a17sO
JM2IOt4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4W327NnS
pEkTadOmDRsbGxsbGxsbGxtbCLbWrVvLgw8+KPfdd5+0atUq4Nfv3LmzWVsU
9mnZsqVs2rRJ9uzZw8bGxsbGxsbGxsYW5E3vvZs1ayYdO3aUbdu2BeU1ypYt
K//5z3+8jhoIgkcffVR2797tdRkAAACA9Y4cOSL16tWTjz/+WLKzs4P2Og89
9BD5zVLkNwAAACD4fv/9d4mNjZWlS5cG/bXIb/YivwEAAADBNW/ePKlcubLs
2rUrJK9HfrMX+Q0AAAAIjps3b8qbb74pTZs2lRMnToTsdclv9iK/AQAAAIF3
+fJl6d69u/Ts2VOuXLkS0tcmv9mL/AYAAAAE1rFjx6Rx48by9ttvmza4UCO/
2Yv8BgAAAATOjh07zFi3BQsWeFYD+c1e5DcAAAAgMBYvXixxcXGydetWT+sg
v9mL/AYAAADcGu0j+dFHH0n9+vUlJSXF63LIbxYjvwEAAAAld/XqVenbt690
7txZ0tLSvC7HIL/Zi/wGAAAAlMypU6dMVho5cqTcuHHD63J8yG/2Ir8BAAAA
xbd3716pWrWqJCQkeF1KHuQ3e5HfAAAAgOJZuXKlxMbGyoYNG7wuxS/ym73I
bwAAAEDRZGdny8SJE6V27dqSnJzsdTn5Ir/Zi/wGAAAAFO769evyzDPPSNu2
beX8+fNel1Mg8pu9yG8AAABAwc6ePSstW7aUIUOGSEZGhtflFIr8Zi/yGwAA
AJC//fv3S3x8vHz55ZfFfq72tzx9+rTs2bNHzpw5Yx6HAvnNXuQ3AAAAwL9f
fvlFYmJi5Oeffy72c9PT06VPnz5yzz33mHvu0qVLS+PGjUOyzgD5zV7kNwAA
ACCvqVOnSo0aNSQpKanYz9WMVqpUKWndurXcvHnT7NN/Ncs98MADkpmZGehy
cyC/2Yv8BgAAAPw/mq2GDRsmLVq0MH0eS2Lp0qVmbTh/unXrJsuWLbuVEgtF
frMX+Q0AAAD4L51Xsl27djJo0CAz32RJvf766/Ltt9/6PTZnzhwZPXp0ia9d
FOQ3e5HfAAAAAJGDBw9KnTp1ZMKECbc8z8h7770nX3/9td9j06dPl/fff/+W
rl8Y8pu9yG8AAACIdhs3bpTY2FhZsWJFQK63YcMGadq0aZ65Spxxcb/99ltA
Xic/5Dd7kd8AAAAQzWbPni1VqlQxc/wH0ogRI0xWS05OlqysLPOvPp48eXJA
X8cf8pu9yG8AAACIRtoWpuPU7r//fjl58mRQXkPXjNM+mXfccYfUrVu3RGvI
lQT5zV7kNwAAAESbtLQ0efzxx6V3795y9epVr8sJOPKbvchvAAAAiCb//POP
NGjQwMwh4qzNZhvym73IbwAAAIgW27Ztk7i4OFm0aJHXpQQV+c1e5DcAAABE
g//5n/8x2W379u1elxJ05Dd7kd8AAABgM+0jqeuxNWrUSI4dO+Z1OSFBfrMX
+Q0AAAC20rlJdI6Srl27yqVLl7wuJ2TIb/YivwEAAMBGJ06cMGsD6BoBudfR
th35zV7kNwAAANhG72+rVq0qc+bM8boUT5Df7EV+AwAAgE1++OEHiY2NlU2b
NnldimfIb/YivwEAAMAG2dnZMn78eKlbt64cPnzY63I8RX6zF/kNAAAAkS49
PV0GDhwoHTp0kIsXL3pdjufIb/YivwEAACCSnT59Wpo3by7Dhw+XzMxMr8sJ
C+Q3e5HfAAAAEKmSkpKkevXqMn36dK9LCSvkN3uR3wAAABCJVq1aJTExMbJu
3TqvSwk75Dd7kd8AAAAQab744gupWbMmGSUf5Dd7kd8AAAAQKTIyMuSFF16Q
Vq1ayblz57wuJ2yR3+xFfgMAAEAkSE1NlTZt2sgzzzxjchzyR36zF/kNAAAA
4S45Odn0l5w0aZLXpUQE8pu9yG8AAAAIZ+vXrzfzlCQmJnpdSsQgv9mL/AYA
AIBwNXPmTKlWrZr89ddfXpcSUchv9iK/AQAAINxkZWXJK6+8Is2aNTPrc6N4
yG/2Ir8BAAAgnKSlpUmnTp2kb9++cu3aNa/LiUjkN3uR3wAAABAujhw5InXr
1pVx48ZJdna21+VELPKbvchvAAAACAebN2+W2NhYWbp0qdelRDzym73IbwAA
APDa/PnzpXLlyvLHH394XYoVyG/2Ir8BAADAKzdv3pS33npLmjRpIsePH/e6
HGuQ3+xFfgMAAIAXLl++LD169DDblStXvC7HKuQ3e5HfAAAAEGra1qZtbtr2
pm1wCCzym73IbwAAAAilnTt3mrFuCxYs8LoUa5Hf7EV+AwAAQKgsWbLEzDG5
ZcsWr0uxGvnNXuQ3AAAABJv2kRw7dqzUr19fUlJSvC7HeuQ3e5HfAAAAEEzX
rl2Tfv36SefOnSUtLc3rcqIC+c1e5DcAAAAEy6lTp0yWeOWVVyQrK8vrcqIG
+c1e5DcAAAAEw969e6VatWqSkJDgdSlRh/xmL/IbAAAAAu3HH38085T8+uuv
XpcSlchv9iK/AQAAIFCys7Pls88+k1q1aklycrLX5UQt8pu9yG8AAAAIhIyM
DHn22WfN/eX58+e9Lieqkd/sRX4DAADArTp37py0bNlSXnjhBZPj4C3ym73I
bwAAALgV+/fvl/j4eJkyZYrXpeD/Ir/Zi/wGAACAklq7dq3ExMTI6tWrvS4F
LuQ3e5HfAAAAUBLTpk2T6tWrS1JSktelIBfym73IbwAAACiOzMxMGT58uLRo
0ULOnDnjdTnwg/xmL/IbAAAAiurChQvSvn17GThwoKSnp3tdDvJBfrMX+Q0A
AABFcejQIalTp458+umnZp03hC/ym73IbwAAACjMxo0bJTY2VpYvX+51KSgC
8pu9yG8AAAAoyJw5c6Rq1arcM0YQ8pu9yG8AAABQN2/elLNnz5oxbvr1jRs3
ZPTo0XL//ffLv//+63V5KAbym73IbwAAAEhMTJR69epJ5cqV5Z577pHatWub
eUqeeOIJuXr1qtfloZjIb/YivwEAAES3zZs3S6lSpWTHjh3m8T///CP33nuv
2cfabpGJ/GYv8hsAAED0ysrKMjlt586d5vH27dslLi5Ovv/+e/nmm2+ke/fu
HleIkiC/2Yv8BgAAEL10TYCmTZuarxcuXGiym2Y4de3aNbnrrrvMWDhEFvKb
vchvAAAA0evw4cPSqFEjef/996Vhw4Zy9OhR3zEd91ahQgXyWwQiv9mL/AYA
ABC90tLSpGzZstKiRQu5dOlSjmPvvPOO9OnTx6PKcCvIb/YivwEAAEQnXRPg
gQcekB49epgxcDqPidL2thkzZph9qampHleJkiC/2Yv8BgAAEH30/k/X5J49
e7Z5/Pfff5t+lHfeeaeUL1/e3CPq2DhEJvKbvchvAAAA0WXZsmUSGxsrGzdu
zLFf292uXLki6enpkp2d7VF1CATym73IbwAAANFBM9mnn34qdevWNfOWwF7k
N3uR3wAAAOynbWqDBg2S9u3by4ULF7wuB0FGfrMX+Q0AAMBuZ86cMfNLDhs2
TDIzM70uByFAfrMX+Q0AAMBeSUlJUr16dZk2bZrXpSCEyG/2Ir8BAADYadWq
VRITEyNr1671uhSEGPnNXuQ3AAAA+0yZMkVq1qwp+/fv97oUeID8Zi/yGwAA
gD0yMjJkyJAh0rJlSzl37pzX5cAj5Dd7kd8AAADskJqaau7tBg8ebHIcohf5
zV7kNwAAgMiXnJwstWrVks8++8zrUhAGyG/2Ir8BAABEtl9//dXMU/LTTz95
XQrCBPnNXuQ3AACAyJWQkCDVqlWTP//80+tSEEbIb/YivwEAAESerKwsGTly
pLlPP3XqlNflIMyQ3+xFfgMAAIgsaWlp0rlzZ+nbt69cu3bN63IQhshv9iK/
AQAARI4jR45IvXr1ZOzYsXLz5k2vy0GYIr/Zi/wGAAAQGTZv3ixxcXGydOlS
r0tBmCO/2Yv8BgAAEP4WLFggVapUkZ07d3pdCiIA+c1e5DcAAIDwpX0k3377
bWncuLEcP37c63IQIchv9iK/AQAAhKcrV65Iz549pXv37uZroKjIb/YivwEA
AIQfbWtr0qSJvPnmm8xTgmIjv9mL/AYAABBedIybjnWbP3++16UgQpHf7EV+
AwAACB86t6TOMalzTQIlRX6zF/kNAADAe9nZ2TJu3Diztpuu8QbcCvKbvchv
AAAA3rp27Zr069dPOnXqJGlpaV6XAwuQ3+xFfgMAAPDO6dOnpVmzZvLyyy9L
VlaW1+XAEuQ3e5HfAAAAvPHnn39KtWrVZObMmV6XAsuQ3+xFfgMAAAi9n376
SWJjY2X9+vVelwILkd/sRX4DAAAIrUmTJkmtWrUkOTnZ61JgKfKbvchvAAAA
oZGRkSHPPvustGnTRlJTU70uBxYjv9mL/AYAABB8586dk1atWsnzzz9vchwQ
TOQ3e5HfAAAAgkvvo2vWrClffPGF16UgSpDf7EV+AwAACJ5169ZJTEyMrFq1
yutSEEXIb/YivwEAAATH9OnTpXr16pKUlOR1KYgy5Dd7kd8AAAACKzMzU156
6SVp3ry5WZ8bCDXym73IbwAAAIFz4cIF6dChgwwYMEDS09O9LgdRivxmL/Ib
AABAYBw+fFjq1q0r48ePl+zsbK/LQRQjv9mL/AYAAHDrNm3aJLGxsbJs2TKv
SwHIbxYjvwEAANyauXPnSpUqVbinQtggv9mL/AYAAFAyN27ckDfeeEPuu+8+
+ffff70uB/Ahv9mL/AYAAFB8ly5dkm7dukmvXr3k6tWrXpcD5EB+sxf5DQAA
oHiOHj0qDRs2lHfffVdu3rzpdTlAHuQ3e5HfAAAAim779u0SFxcnCxcu9LoU
IF/kN3uR3wAAAIrm+++/N9lNM1xBMjIyzBregFfIb/YivwEAABRM+0h+8MEH
0qBBA9N3Mj/79u2Tjh07Srly5aRs2bLSpk0bOXbsWAgrBf6L/GYv8hsAAED+
dG6SJ598Urp06WLmLMnPuXPnpFSpUjJnzhwzL6Wu3/3NN9+YfTt37gxhxQD5
zWbkNwAAAP90TYAHHnhARo0aZTJZQdq2bStLlizJs/+nn34y6wtongNChfxm
L/IbAABAXnp/VLVqVdOGVhgd76Z9JvObi7Jy5cpy9uzZQJcI5Iv8Zi/yGwAA
QE7Lly+X2NhY2bhxY5HOv379upQvXz7f4zVq1JDTp08HqjygUOQ3e5HfAAAA
/kv7OE6YMEHq1Kkjhw4dKtbzHnnkEVm5cmWeY+vXrzdZkHXiEErkN3uR3wAA
AP7bhvb0009Lu3bt5MKFC8V+vq4poHOV/PDDD75927ZtM/u410Kokd/sRX4D
AADR7syZM9KiRQt58cUXb2ndtoMHD5q2Nh03Fx8fL3Xr1pW1a9cGsFKgaMhv
9iK/AQCAaJaUlGTGp02dOjUg19O+lDrW7dSpU/SZhGfIb/YivwEAgGi1evVq
iYmJkV9++cXrUoCAIr/Zi/wGAACi0Zdffik1a9aU/fv3e10KEHDkN3uR3wAA
QDTRtdqGDh1q5otkTTbYivxmL/IbAACIFufPn5e2bdvK4MGDTY4DbEV+sxf5
DQAARIPk5GSpVauWTJw40cwxAtiM/GYv8hsAALDdhg0bzLz+P/74o9elACFB
frMX+Q0AANgsISHBrMe2d+9er0sBQob8Zi/yGwAAsFFWVpa8+uqr5j5W12ID
ogn5LfB0zqNy5coVaRsyZEjQ6iC/AQAA26Slpcljjz0mTz31lFy9etXrcoCQ
I78F3s6dOyUuLk4qVaokM2bMMG37+W3r168PWh3kNwAAYJOUlBSpX7++fPTR
R3Lz5k2vywE8QX4LDv3vi7avTZs2zbMayG8AAMAWW7ZsMfOULFmyxOtSAE+R
34Jn5syZctddd8nFixc9eX3yGwAAsMGCBQukcuXKpo8TEO3Ib8Gj7frbtm2T
1NTUgF5Xx+xeuXKl0K1FixayY8eOgL42AABAqOi91DvvvCONGzeW48ePe10O
EBbIb5Fn+fLlUrFixUK3UqVKyfjx470uFwAAoNj0b9G9evWSbt26yeXLl70u
Bwgb5Dd7ad/N//mf//G6DAAAgGLRtramTZvKmDFjmKcEyIX8Zi/yGwAAiDR/
/PGHGes2b948r0sBwhL5zV7kNwAAEEmWLl1q5pjcvHmz16UAYYv8Fnjhsn43
+Q0AAESC7Oxs+fjjj6Vu3bpy5MgRr8sBwhr5LfDCZf1u8hsAAAh3165dk/79
+0vHjh0lLS3N63KAsEd+C45wWL+b/AYAAMLZ6dOn5eGHH5YRI0aY9ZEAFI78
Fjxer99NfgMAAOHqr7/+kurVq5u+SgCKjvwWPMFav7uoyG8AACAcJSYmmnlK