-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdeeplab.py
247 lines (203 loc) · 9.17 KB
/
deeplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
__all__ = ['ResNet', 'resnet50', 'resnet101', 'resnet152']
model_urls = {
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
def forward(self, x):
# return super(Conv2d, self).forward(x)
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
keepdim=True).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return F.conv2d(x, weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
class ASPP(nn.Module):
def __init__(self, C, depth, num_classes, conv=nn.Conv2d, norm=nn.BatchNorm2d, momentum=0.0003, mult=1):
super(ASPP, self).__init__()
self._C = C
self._depth = depth
self._num_classes = num_classes
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.relu = nn.ReLU(inplace=True)
self.aspp1 = conv(C, depth, kernel_size=1, stride=1, bias=False)
self.aspp2 = conv(C, depth, kernel_size=3, stride=1,
dilation=int(6*mult), padding=int(6*mult),
bias=False)
self.aspp3 = conv(C, depth, kernel_size=3, stride=1,
dilation=int(12*mult), padding=int(12*mult),
bias=False)
self.aspp4 = conv(C, depth, kernel_size=3, stride=1,
dilation=int(18*mult), padding=int(18*mult),
bias=False)
self.aspp5 = conv(C, depth, kernel_size=1, stride=1, bias=False)
self.aspp1_bn = norm(depth, momentum)
self.aspp2_bn = norm(depth, momentum)
self.aspp3_bn = norm(depth, momentum)
self.aspp4_bn = norm(depth, momentum)
self.aspp5_bn = norm(depth, momentum)
self.conv2 = conv(depth * 5, depth, kernel_size=1, stride=1,
bias=False)
self.bn2 = norm(depth, momentum)
self.conv3 = nn.Conv2d(depth, num_classes, kernel_size=1, stride=1)
def forward(self, x):
x1 = self.aspp1(x)
x1 = self.aspp1_bn(x1)
x1 = self.relu(x1)
x2 = self.aspp2(x)
x2 = self.aspp2_bn(x2)
x2 = self.relu(x2)
x3 = self.aspp3(x)
x3 = self.aspp3_bn(x3)
x3 = self.relu(x3)
x4 = self.aspp4(x)
x4 = self.aspp4_bn(x4)
x4 = self.relu(x4)
x5 = self.global_pooling(x)
x5 = self.aspp5(x5)
x5 = self.aspp5_bn(x5)
x5 = self.relu(x5)
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode='bilinear',
align_corners=True)(x5)
x = torch.cat((x1, x2, x3, x4, x5), 1)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
return x
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, conv=None, norm=None):
super(Bottleneck, self).__init__()
self.conv1 = conv(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = norm(planes)
self.conv2 = conv(planes, planes, kernel_size=3, stride=stride,
dilation=dilation, padding=dilation, bias=False)
self.bn2 = norm(planes)
self.conv3 = conv(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = norm(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes, num_groups=None, weight_std=False, beta=False):
self.inplanes = 64
self.norm = lambda planes, momentum=0.05: nn.BatchNorm2d(planes, momentum=momentum) if num_groups is None else nn.GroupNorm(num_groups, planes)
self.conv = Conv2d if weight_std else nn.Conv2d
super(ResNet, self).__init__()
if not beta:
self.conv1 = self.conv(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
else:
self.conv1 = nn.Sequential(
self.conv(3, 64, 3, stride=2, padding=1, bias=False),
self.conv(64, 64, 3, stride=1, padding=1, bias=False),
self.conv(64, 64, 3, stride=1, padding=1, bias=False))
self.bn1 = self.norm(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=2)
self.aspp = ASPP(512 * block.expansion, 256, num_classes, conv=self.conv, norm=self.norm)
for m in self.modules():
if isinstance(m, self.conv):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or dilation != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
self.conv(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, dilation=max(1, dilation/2), bias=False),
self.norm(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, dilation=max(1, dilation/2), conv=self.conv, norm=self.norm))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation, conv=self.conv, norm=self.norm))
return nn.Sequential(*layers)
def forward(self, x):
size = (x.shape[2], x.shape[3])
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.aspp(x)
x = nn.Upsample(size, mode='bilinear', align_corners=True)(x)
return x
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, num_groups=None, weight_std=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], num_groups=num_groups, weight_std=weight_std, **kwargs)
if pretrained:
model_dict = model.state_dict()
if num_groups and weight_std:
pretrained_dict = torch.load('data/R-101-GN-WS.pth.tar')
overlap_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
assert len(overlap_dict) == 312
elif not num_groups and not weight_std:
pretrained_dict = model_zoo.load_url(model_urls['resnet101'])
overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
else:
raise ValueError('Currently only support BN or GN+WS')
model_dict.update(overlap_dict)
model.load_state_dict(model_dict)
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model