A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
- To reach at the end we can either go down or right, so we do it by recursion.
- when we reach the goal we return 1.
- if we go out of boundary we return 0
class Solution {
private:
int uniquePathsHelper(int m, int n, int i, int j)
{
if (i == m - 1 && j == n - 1)
return 1;
if (i >= m || j >= n)
return 0;
int right = uniquePathsHelper(m, n, i, j + 1);
int down = uniquePathsHelper(m, n, i + 1, j);
return right + down;
}
public:
int uniquePaths(int m, int n)
{
return uniquePathsHelper(m, n, 0, 0);
}
};
class Solution {
private:
int dp[101][101];
int uniquePathsHelper(int m, int n, int i, int j)
{
if (i == m - 1 && j == n - 1)
return 1;
if (i >= m || j >= n)
return 0;
if (dp[i][j] != -1)
return dp[i][j];
int right = uniquePathsHelper(m, n, i, j + 1);
int down = uniquePathsHelper(m, n, i + 1, j);
return dp[i][j] = right + down;
}
public:
int uniquePaths(int m, int n)
{
memset(dp, -1, sizeof(dp));
return uniquePathsHelper(m, n, 0, 0);
}
};
Other type solution
- Time Complexity: O(2^n)
class Solution {
public:
int uniquePaths(int m, int n) {
if(m<1||n<1) return 0;
if(m==1||n==1) return 1;
return uniquePaths(m-1,n)+uniquePaths(m,n-1);
}
};
- remember to store calculated values in a dp - last line.
- Time complexity: m x n
- Space complexity: m x n
class Solution{
private:
int dfs(int m, int n, vector<vector<int>> &dp){
if (m < 0 || n < 0) return 0;
if (m == 0 || n == 0) return 1;
if(dp[m][n]>0) return dp[m][n];
return dp[m][n] = dfs(m - 1, n, dp) + dfs(m, n - 1, dp);
}
public:
int uniquePaths(int m, int n){
vector<vector<int>> dp(m, vector<int>(n, -1));
return dfs(m - 1, n - 1, dp);
}
};
- Time complexity: m x n
- Space complexity: m x n
class Solution {
public:
int uniquePaths(int m, int n)
{
int dp[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 || j == 0)
dp[i][j] = 1;
else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
};
- Time complexity: O(min(m,n))
- Explained in striver's video.
class Solution{
public:
int uniquePaths(int m, int n){
int N = n + m - 2;
int r = m - 1;
double res = 1;
for (int i = 1; i <= r; i++){
res = res * (N - r + i) / i;
}
return (int)res;
}
};