-
Notifications
You must be signed in to change notification settings - Fork 45
/
LEs_SORIterate_test.go
103 lines (93 loc) · 3.09 KB
/
LEs_SORIterate_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// LEs_SORIterate_test
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-11-22
版本 : 0.0.0
------------------------------------------------------
解n阶线性方程组的SOR(逐次超松弛, successive over
relaxation)迭代法
理论:
参考 李信真, 车刚明, 欧阳洁, 等. 计算方法. 西北工业大学
出版社, 2000, pp 68-72.
收敛的条件:(B为变化后的系数矩阵)
1. 系数矩阵A严格对角占优,且0 < omega <= 1,或者
2. 系数矩阵A对称正定,且0 < omega < 2
------------------------------------------------------
输入 :
A 系数矩阵
b 常数值向量
tol 最大容许误差
omega 松弛因子,0 < omega < 2, omega = 1: Siedel,
omega < 1: 低松弛, omega > 1: 超松弛
n 最大迭代步数
输出 :
sol 解向量
err 解出标志:false-未解出或达到步数上限;
true-全部解出
------------------------------------------------------
*/
package goNum_test
import (
"math"
"testing"
"github.com/chfenger/goNum"
)
// LEs_SORIterate 解n阶线性方程组的SOR(逐次超松弛, successive over relaxation)迭代法
func LEs_SORIterate(A, b, x0 goNum.Matrix, tol, omega float64, n int) ([]float64, bool) {
/*
解n阶线性方程组的SOR(逐次超松弛, successive over relaxation)迭代法
输入 :
A 系数矩阵
b 常数值向量
tol 最大容许误差
omega 松弛因子,0 < omega < 2, omega = 1: Siedel,
omega < 1: 低松弛, omega > 1: 超松弛
n 最大迭代步数
输出 :
sol 解向量
err 解出标志:false-未解出或达到步数上限;
true-全部解出
*/
x1 := goNum.ZeroMatrix(A.Rows, 1)
sol := goNum.ZeroMatrix(A.Rows, 1)
var err bool = false
//求解
for i := 0; i < n; i++ {
for i0 := 0; i0 < A.Rows; i0++ {
sum0 := 0.0
for j := 0; j < i0; j++ {
sum0 += A.GetFromMatrix(i0, j) * x1.GetFromMatrix(j, 0)
}
sum1 := 0.0
for j := i0 + 1; j < A.Columns; j++ {
sum1 += A.GetFromMatrix(i0, j) * x0.GetFromMatrix(j, 0)
}
x1.SetMatrix(i0, 0, (1-omega)*x0.GetFromMatrix(i0, 0)+omega*(b.Data[i0]-sum0-sum1)/A.GetFromMatrix(i0, i0))
}
//判断收敛
sol = goNum.SubMatrix(x1, x0)
max, _, _ := goNum.Max(sol.Data)
if math.Abs(max) < tol {
sol = x1
err = true
return sol.Data, err
}
//准备下次迭代
for i0 := 0; i0 < x0.Rows; i0++ {
x0.Data[i0] = x1.Data[i0]
}
}
return make([]float64, A.Rows), err
}
func BenchmarkLEs_SORIterate(b *testing.B) {
A18 := goNum.NewMatrix(4, 4, []float64{2.0, -1.0, 0.0, 0.0,
-1.0, 2.0, -1.0, 0.0,
0.0, -1.0, 2.0, -1.0,
0.0, 0.0, -1.0, 2.0})
b18 := goNum.NewMatrix(4, 1, []float64{1.0, 0.0, 1.0, 0.0})
x18 := goNum.NewMatrix(4, 1, []float64{1.0, 1.0, 1.0, 1.0})
for i := 0; i < b.N; i++ {
LEs_SORIterate(A18, b18, x18, 1e-6, 1.46, 1e6)
}
}