-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
159 lines (108 loc) · 5.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from typing import Tuple, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from transformers import AutoModel, AutoTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from sklearn.metrics import f1_score, accuracy_score
from sklearn.model_selection import train_test_split
import data_processor
from utils import convert_data_to_tensor, create_data_loader
from models import PhoBertModel
tokenizer_path = 'models/phobert-pretrained'
roberta_path = 'models/phobert-pretrained'
BATCH_SIZE = 32
MAX_LEN = 300
EPOCHS = 8
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device('cpu')
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
def convert_data_to_tensor(data: List[Tuple],
label: List[int]):
X = tokenizer.batch_encode_plus(data, padding=True, truncation=True, max_length=MAX_LEN, return_tensors='pt')
y = torch.tensor(label, dtype=torch.long)
data_tensor = TensorDataset(X['input_ids'], X['attention_mask'], y)
return data_tensor
def create_data_loader(data_tensor, shuffle=True):
data_loader = DataLoader(data_tensor, batch_size=BATCH_SIZE, shuffle=shuffle)
return data_loader
def initialize_model(train_tensor, lr=3e-5, num_warmup_steps=200):
model = PhoBertModel(roberta_path)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [param for name, param in param_optimizer if not any(nd in name for nd in no_decay)],
'weight_decay_rate': 0.01},
{'params': [param for name, param in param_optimizer if any(nd in name for nd in no_decay)],
'weight_decay_rate': 0.0}
]
#model.to(device)
optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
n_steps = int(len(train_tensor)/BATCH_SIZE) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer=optimizer, num_training_steps=n_steps, num_warmup_steps=num_warmup_steps)
loss_fn = nn.CrossEntropyLoss()
return model, optimizer, scheduler, loss_fn
def step(model, optimizer, scheduler, loss_fn, batch):
model.train()
input_ids, attention_mask, label = tuple(t.to(device) for t in batch)
optimizer.zero_grad()
y_pred = model.forward(input_ids, attention_mask)
loss = loss_fn(y_pred, label)
loss.backward()
optimizer.step()
scheduler.step()
return loss.item()
def validate(model, loss_fn, test_loader):
print("Evaluating....")
model.eval()
with torch.no_grad():
total_loss = 0.0
accuracy = 0
all_y_true = []
all_y_pred = []
for i, batch in enumerate(test_loader):
input_ids, attention_mask, y_true = tuple(t.to(device) for t in batch)
output = model.forward(input_ids, attention_mask)
loss = loss_fn(output, y_true)
total_loss += loss.item()
y_pred = output.argmax(1)
all_y_true.extend(list(y_true.to('cpu').numpy()))
all_y_pred.extend(list(y_pred.to('cpu').numpy()))
val_loss = total_loss/len(test_loader)
accuracy = accuracy_score(all_y_true, all_y_pred)
f1 = f1_score(all_y_true, all_y_pred)
return val_loss, accuracy, f1
def train(model, optimizer, scheduler, loss_fn, train_tensor, test_tensor):
max_f1 = 0.8
test_loader = create_data_loader(test_tensor, shuffle=False)
for epoch in range(EPOCHS):
total_loss = 0.0
train_loader = create_data_loader(train_tensor, shuffle=True)
for i, batch in enumerate(train_loader):
loss = step(model, optimizer, scheduler, loss_fn, batch)
total_loss += loss
if (i + 1) % 50 == 0:
print("Epoch: {} - iter: {}/{} - train_loss: {}".format(epoch, i + 1, len(train_loader), total_loss/(i + 1)))
val_loss, accuracy, f1 = validate(model, loss_fn, test_loader)
print("Val_loss: {} - Accuracy: {} - F1-score: {}".format(val_loss, accuracy, f1))
if f1 > max_f1:
max_f1 = f1
torch.save(model.state_dict(), f'./models/finetuned/model_epoch_{epoch}.pt')
with open('./models/finetuned/epoch_{}.txt'.format(epoch), mode='w', encoding='utf-8') as f:
f.write("Val_loss: {} - Accuracy: {} - F1-score: {} - Max F1: {}".format(val_loss, accuracy, f1, max_f1))
print(f"Saved english model at epoch {epoch}.")
if __name__ == '__main__':
train_data = []
train_labels = []
datasets, labels = data_processor.load_data("./data/QnA_data/zalo_train.json")
train_data, test_data, train_labels, test_labels = train_test_split(datasets, labels, test_size=0.2, random_state=42)
print("Total training examples : ", len(train_data))
print("Converting to tensor...")
train_tensor = convert_data_to_tensor(train_data, train_labels)
test_tensor = convert_data_to_tensor(test_data, test_labels)
print("Loading PhoBert....")
model, optimizer, scheduler, loss_fn = initialize_model(train_tensor, lr=2e-5, num_warmup_steps=50)
model.to(device)
print("Starting training...")
train(model, optimizer, scheduler, loss_fn, train_tensor=train_tensor, test_tensor=test_tensor)