-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtiny_fd.py
146 lines (120 loc) · 5.55 KB
/
tiny_fd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import logging
import mxnet as mx
import numpy as np
import cv2 as cv
import pickle
import os, sys
from collections import namedtuple
import time
Batch = namedtuple('Batch', ['data'])
class TinyFacesDetector:
def __init__(self, model_root='./', prob_thresh=0.5, gpu_idx=0, cudnn_autotune=False, verbose=False):
if verbose:
logging.basicConfig(level = logging.INFO, format = '[INFO]: %(message)s', handlers = [logging.StreamHandler()])
logging.info('Loading detector...')
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT']=str(int(cudnn_autotune))
self.MAX_INPUT_DIM=5000.0
self.prob_thresh = prob_thresh
self.nms_thresh = 0.1
sym, arg_params, aux_params = mx.model.load_checkpoint(os.path.join(model_root, 'hr101'),0)
all_layers = sym.get_internals()
meta_file = open(os.path.join(model_root, 'meta.pkl'), 'rb')
self.clusters = pickle.load(meta_file)
self.averageImage = pickle.load(meta_file)
meta_file.close()
self.clusters_h = self.clusters[:,3] - self.clusters[:,1] + 1
self.clusters_w = self.clusters[:,2] - self.clusters[:,0] + 1
self.normal_idx = np.where(self.clusters[:,4] == 1)
context=mx.gpu(gpu_idx)
self.mod = mx.mod.Module(symbol=all_layers['fusex_output'], context=context, data_names=['data'], label_names=None)
self.mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))], label_shapes=None, force_rebind=False)
self.mod.set_params(arg_params=arg_params, aux_params=aux_params, force_init=False)
logging.info('Done loading.')
@staticmethod
def nms(dets, prob_thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= prob_thresh)[0]
order = order[inds + 1]
return keep
def detect(self, img):
raw_img = img
raw_h = raw_img.shape[0]
raw_w = raw_img.shape[1]
raw_img = cv.cvtColor(raw_img, cv.COLOR_BGR2RGB)
raw_img_f = raw_img.astype(np.float32)
min_scale = min(np.floor(np.log2(np.max(self.clusters_w[self.normal_idx]/raw_w))), np.floor(np.log2(np.max(self.clusters_h[self.normal_idx]/raw_h))))
max_scale = min(1.0, -np.log2(max(raw_h, raw_w)/self.MAX_INPUT_DIM))
scales_down = np.arange(min_scale, 0+0.0001, 1.)
scales_up = np.arange(0.5, max_scale+0.0001, 0.5)
scales_pow = np.hstack((scales_down, scales_up))
scales = np.power(2.0, scales_pow)
start = time.time()
bboxes = np.empty(shape=(0,5))
for s in scales[::-1]:
img = cv.resize(raw_img_f, (0,0), fx = s, fy = s)
img = np.transpose(img,(2,0,1))
img = img - self.averageImage
tids = []
if s <= 1. :
tids = list(range(4, 12))
else :
tids = list(range(4, 12)) + list(range(18, 25))
ignoredTids = list(set(range(0,self.clusters.shape[0]))-set(tids))
img_h = img.shape[1]
img_w = img.shape[2]
img = img[np.newaxis, :]
self.mod.reshape(data_shapes=[('data', (1, 3, img_h, img_w))])
self.mod.forward(Batch([mx.nd.array(img)]))
self.mod.get_outputs()[0].wait_to_read()
fusex_res = self.mod.get_outputs()[0]
score_cls = mx.nd.slice_axis(fusex_res, axis=1, begin=0, end=25, name='score_cls')
score_reg = mx.nd.slice_axis(fusex_res, axis=1, begin=25, end=None, name='score_reg')
prob_cls = mx.nd.sigmoid(score_cls)
prob_cls_np = prob_cls.asnumpy()
prob_cls_np[0,ignoredTids,:,:] = 0.
_, fc, fy, fx = np.where(prob_cls_np > self.prob_thresh)
cy = fy * 8 - 1
cx = fx * 8 - 1
ch = self.clusters[fc, 3] - self.clusters[fc,1] + 1
cw = self.clusters[fc, 2] - self.clusters[fc, 0] + 1
Nt = self.clusters.shape[0]
score_reg_np = score_reg.asnumpy()
tx = score_reg_np[0, 0:Nt, :, :]
ty = score_reg_np[0, Nt:2*Nt,:,:]
tw = score_reg_np[0, 2*Nt:3*Nt,:,:]
th = score_reg_np[0,3*Nt:4*Nt,:,:]
dcx = cw * tx[fc, fy, fx]
dcy = ch * ty[fc, fy, fx]
rcx = cx + dcx
rcy = cy + dcy
rcw = cw * np.exp(tw[fc, fy, fx])
rch = ch * np.exp(th[fc, fy, fx])
score_cls_np = score_cls.asnumpy()
scores = score_cls_np[0, fc, fy, fx]
tmp_bboxes = np.vstack((rcx-rcw/2, rcy-rch/2, rcx+rcw/2,rcy+rch/2))
tmp_bboxes = np.vstack((tmp_bboxes/s, scores))
tmp_bboxes = tmp_bboxes.transpose()
bboxes = np.vstack((bboxes, tmp_bboxes))
logging.info("Detection time: " + str(time.time()-start) + "secs.")
refind_idx = self.nms(bboxes, self.nms_thresh)
refind_bboxes = bboxes[refind_idx]
refind_bboxes = refind_bboxes.astype(np.int32)
return refind_bboxes