Skip to content

Latest commit

 

History

History
81 lines (69 loc) · 1.58 KB

README.md

File metadata and controls

81 lines (69 loc) · 1.58 KB

Face Completion

Overview

A TensorFlow implementation using residual convolution autoencoder with/without discriminator for Face Completion

Dataset

  • Use CELEBA
  • Generate noise at center (64x64) in utils.py
  • Data path
    -Face-Completion
      -autoencoder
        -data
          -train
          -test
      -autoencoder_gan
        -data
          -train
          -test
    

Requirements

  • Python == 2.7
  • Tensorflow == 1.4
  • Skimage
  • Matplotlib == 2.0.0

Autoencoder

Run

  • Load pre-trained
    Put checkpoint files under ./autoencoder/model folder and set restore=True

  • Train and test

python main.py
--epoch 
--batch_size
--data_path=./data
--model_path=./model
--output_path=./out
--graph_path=./graph
--restore=False
--mode=train/test
  • Visualization
tensorboard --logdir=./graph

Result

Autoencoder + GAN

Run

  • Train and test
python main.py
--epoch 
--batch_size
--data_path=./data
--model_path=./model
--output_path=./out
--graph_path=./graph
--restore=False
--mode=train/test
  • Visualization
tensorboard --logdir=./graph

Network

Loss

Result