-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhoac.py
869 lines (704 loc) · 23.8 KB
/
hoac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Chris Hold
"""
import numpy as np
from scipy.ndimage import median_filter
from pathlib import Path
from warnings import warn
import subprocess
import threading
import bz2
import pickle
import spaudiopy as spa
try:
import safpy
except ImportError as e:
warn("SAFPY not available.", ImportWarning)
try:
import pylibopus
except ImportError as e:
warn("pylibopus not available.", ImportWarning)
HOAC_VERSION = '0.1'
def get_version():
"""HOAC version."""
return HOAC_VERSION
def cart2sph(x, y, z):
"""Vectorized conversion of cartesian to spherical coordinates."""
r = np.sqrt(np.square(x) + np.square(y) + np.square(z))
azi = np.arctan2(y, x)
zen = np.arccos(z / r)
return azi, zen, r
def sph2cart(azi, zen, r):
"""Vectorized conversion of spherical to cartesian coordinates."""
x = r * np.cos(azi) * np.sin(zen)
y = r * np.sin(azi) * np.sin(zen)
z = r * np.cos(zen)
return x, y, z
def cart2dir(x, y, z):
"""Vectorized conversion of cartesian to spherical coordinates."""
return np.arctan2(y, x), \
np.arccos(z/(np.sqrt(np.square(x) + np.square(y) + np.square(z))))
def dir2cart(azi, zen):
"""Vectorized conversion of spherical to cartesian coordinates."""
return np.cos(azi) * np.sin(zen), np.sin(azi) * np.sin(zen), np.cos(zen)
def vec2dir(vec):
"""Conversion of cartesian to spherical coordinates (along last axis)."""
azi, zen = cart2dir(vec[..., 0], vec[..., 1], vec[..., 2])
return np.stack((azi, zen), axis=-1)
def estimate_sector_parameters(x_nm, A_wxyz_c, TRANSPOSE=False):
"""
Sector S parameters from SH signals L, frequency K band.
Parameters
----------
x_nm : TYPE
L x K.
A_wxyz : complex
4*S x L.
Returns
-------
azi_s, zen_s, dif_s, ene_s, int_s : np.ndarray
S x L, or 3*S x L, or transposed
"""
num_secs = A_wxyz_c.shape[0] // 4
x_s = A_wxyz_c @ x_nm
sec_intensity = np.empty((3*num_secs, x_s.shape[1]))
sec_energy = np.empty((num_secs, x_s.shape[1]))
azi_s = np.empty((num_secs, x_s.shape[1]))
zen_s = np.empty((num_secs, x_s.shape[1]))
dif_s = np.empty((num_secs, x_s.shape[1]))
r_s = np.empty(x_s.shape[1])
for idx_sec in range(num_secs):
s_sec = x_s[idx_sec*4: idx_sec*4+4, :]
sec_intensity[idx_sec*3: idx_sec*3+3, :] = \
np.real((s_sec[0, :]) * s_sec[1:4, :].conj())
sec_intensity[idx_sec*3, :] += 10e-12
sec_energy[idx_sec, :] = 0.5 * (np.abs(s_sec[0, :])**2 +
np.sum(s_sec[1:4, :].conj() *
s_sec[1:4, :], axis=0).real)
azi_s[idx_sec, :], zen_s[idx_sec, :], r_s[:] = cart2sph(
sec_intensity[idx_sec*3+0, :],
sec_intensity[idx_sec*3+1, :],
sec_intensity[idx_sec*3+2, :])
dif_s[idx_sec, :] = np.clip(
1 - (r_s / (sec_energy[idx_sec, :] + 10e-12)), 0., 1.)
if TRANSPOSE:
return azi_s.T, zen_s.T, dif_s.T, sec_energy.T, sec_intensity.T
else:
return azi_s, zen_s, dif_s, sec_energy, sec_intensity
def grouped_sector_parameters(x_nm, A_wxyz_c, M_grouper, TRANSPOSE=False):
"""
Sector S parameters from SH signals L, frequency K band G grouped.
Parameters
----------
x_nm : np.ndarray
L x K.
A_wxyz_c : np.ndarray, complex
4*S x L.
M_grouper : np.ndarray
K x G.
TRANSPOSE : np.ndarray, optional
The default is False.
Returns
-------
azi_s, zen_s, dif_s, ene_s, int_s : np.ndarray
S x G, or 3*S x G, or transposed
"""
num_secs = A_wxyz_c.shape[0] // 4
x_s = A_wxyz_c @ x_nm
sec_intensity = np.empty((3*num_secs, x_s.shape[1]))
sec_energy = np.empty((num_secs, x_s.shape[1]))
num_fgroups = M_grouper.shape[1]
int_s = np.empty((3*num_secs, num_fgroups))
ene_s = np.empty((num_secs, num_fgroups))
azi_s = np.empty((num_secs, num_fgroups))
zen_s = np.empty((num_secs, num_fgroups))
r_s = np.empty(num_fgroups)
dif_s = np.empty((num_secs, num_fgroups))
for idx_sec in range(num_secs):
s_sec = x_s[idx_sec*4: idx_sec*4+4, :]
sec_intensity[idx_sec*3: idx_sec*3+3, :] = \
np.real((s_sec[0, :]) * s_sec[1:4, :].conj())
sec_intensity[idx_sec*3, :] += 10e-12
sec_energy[idx_sec, :] = 0.5 * (np.abs(s_sec[0, :])**2 +
np.sum(s_sec[1:4, :].conj() *
s_sec[1:4, :], axis=0).real)
int_s[idx_sec*3: idx_sec*3+3, :] = \
sec_intensity[idx_sec*3: idx_sec*3+3, :] @ M_grouper
ene_s[idx_sec, :] = sec_energy[idx_sec, :] @ M_grouper
azi_s[idx_sec, :], zen_s[idx_sec, :], r_s[:] = cart2sph(
int_s[idx_sec*3+0, :],
int_s[idx_sec*3+1, :],
int_s[idx_sec*3+2, :])
dif_s[idx_sec, :] = np.clip(
1 - (r_s / (ene_s[idx_sec, :] + 10e-12)), 0., 1.)
if TRANSPOSE:
return azi_s.T, zen_s.T, dif_s.T, ene_s.T, int_s.T
else:
return azi_s, zen_s, dif_s, ene_s, int_s
def dir_mean(azi, zen, weights=None):
"""
Directional mean.
Parameters
----------
azi : np.ndarray
zen : np.ndarray
weights : np.ndarray, optional
Averaging weights. The default is None.
Returns
-------
azi_m : np.ndarray
zen_m : np.ndarray
"""
x, y, z = np.cos(azi) * np.sin(zen), np.sin(azi) * np.sin(zen), np.cos(zen)
x_m, y_m, z_m = np.average(x, weights=weights),\
np.average(y, weights=weights), np.average(z, weights=weights)
azi_m, zen_m = np.arctan2(y_m, x_m), np.arccos(z_m)
return azi_m, zen_m
def group_dirac_pars(azi, zen, dif, M_grouper, weights):
"""
Group DirAC parameters K into G groups.
Parameters
----------
azi : np.ndarray
zen : np.ndarray
dif : np.ndarray
M_grouper : np.ndarray
Matrix with K x G.
weights : np.ndarray
Returns
-------
azi_g : np.ndarray
zen_g : np.ndarray
dif_g : np.ndarray
"""
x, y, z = dir2cart(azi, zen)
xs, ys, zs = (x*weights)@M_grouper, \
(y*weights)@M_grouper, \
(z*weights)@M_grouper
azi_g, zen_g = cart2dir(10e-12 + xs, ys, zs)
dif_g = dif@M_grouper
return azi_g, zen_g, dif_g
def post_pars(azi, zen, dif, ene, a=0.75):
"""
Stabilizing DoA in high diffuseness (above factor a).
Parameters
----------
azi : np.ndarray
zen : np.ndarray
dif : np.ndarray
a : float
Returns
-------
azi : np.ndarray
zen : np.ndarray
"""
num_slt = azi.shape[0]
for idx_slt in range(1, num_slt):
mask = np.where(dif[idx_slt, ...] > a)
azi[idx_slt, mask[0], mask[1]] = azi[idx_slt - 1, mask[0], mask[1]]
zen[idx_slt, mask[0], mask[1]] = zen[idx_slt - 1, mask[0], mask[1]]
return azi, zen, dif, ene
def get_quant_grid(n_fine, n_coarse=None):
"""
Get quantization grid from spherical designs.
Parameters
----------
n_fine : int
Order.
n_coarse : bool, optional
Prepend coarse grid. The default is None.
Returns
-------
qgrid : np.ndarray
num_coarse : int
"""
# 38: 6.69, 48 : 5deg, 60, 66: 3.93 deg
if n_coarse is None:
qgrid = np.vstack(([1., 0., 0.], spa.grids.load_n_design(n_fine)))
num_coarse = None
else:
grid_coarse = spa.grids.load_n_design(n_coarse)
qgrid = np.vstack(([1., 0., 0.],
grid_coarse,
spa.grids.load_n_design(n_fine)))
num_coarse = len(grid_coarse)
return qgrid, num_coarse
def quantize_doa(azi, zen, qgrid, dif, coarse_th=None, num_coarse=None,
dtype=np.int16):
"""
Quantize DoA parameters to quantization grid.
Parameters
----------
azi : np.ndarray
zen : np.ndarray
qgrid : np.ndarray
dif : np.ndarray
coarse_th : float, optional
Threshold. The default is None.
num_coarse : int, optional
Number of course grid points. The default is None.
dtype : dype, optional
The default is np.int16.
Returns
-------
out : np.ndarray
"""
xq, yq, zq = dir2cart(azi, zen)
v = np.stack((xq, yq, zq), axis=-1)
p_all = v @ qgrid.T[np.newaxis, np.newaxis, :, :]
out = np.empty_like(azi, dtype=dtype)
out = np.argmax(p_all, axis=-1, out=out)
if coarse_th is not None and num_coarse is not None:
mask = dif > coarse_th
p_coarse = v @ qgrid.T[np.newaxis, np.newaxis, :, :num_coarse+1]
out[mask[:]] = np.argmax(p_coarse[mask[:]], axis=-1)
out[dif > 0.95] = dtype(0)
return out
def quantize_dif(dif, qbins, kernel_size=3, dtype=np.uint8):
"""
Quantize diffuseness parameter.
Parameters
----------
dif : np.ndarray
qbins : int
kernel_size : int, optional
Median filter kernel size. The default is 3.
dtype : dtype, optional
The default is np.uint8.
Returns
-------
out : np.ndarray
"""
dif_filtered = median_filter(dif, size=kernel_size, axes=0)
dif_filtered[dif_filtered > 0.95] = 1.
return np.searchsorted(qbins, dif_filtered).astype(dtype)
def downsample_meta(doa_idx_stream, dif_q_stream, user_pars):
"""
Downsample metadata (by zeroing for now).
Parameters
----------
doa_idx_stream : np.ndarray
dif_q_stream : np.ndarray
user_pars : struct
Returns
-------
doa_idx_stream : np.ndarray
dif_q_stream : np.ndarray
"""
if user_pars['metaDecimate'] >= 1:
# no information in DC
doa_idx_stream[:, :, :, 0] = 0
dif_q_stream[:, :, :, 0] = user_pars['metaDifBins']
mask = np.ones_like(doa_idx_stream).astype(np.bool_)
mask[:, 1::user_pars['metaDecimate'], :,
:user_pars['metaDecimateFreqLim']] = False
doa_idx_stream[~mask] = 0
dif_q_stream[~mask] = user_pars['metaDifBins']
return doa_idx_stream, dif_q_stream
def dequantize_dirac_pars(doa_idx_stream, dif_idx_stream, freqs, f_qt_c, qgrid,
qdifbins, a=0.33):
"""
Dequantize / interpolate DirAC parameters.
Parameters
----------
doa_idx_stream : np.ndarray, [slt, ch, :]
dif_idx_stream : np.ndarray, [slt, ch, :]
freqs : np.ndarray
f_qt_c : np.ndarray
qgrid : np.ndarray
qdifbins : np.ndarray
a1 : float, optional
Returns
-------
doa_s : np.ndarray, [slt, ch, :, 3]
dif_s : np.ndarray, [slt, ch, :]
"""
num_slt = doa_idx_stream.shape[0]
num_ch = doa_idx_stream.shape[1]
doa = np.empty((num_slt, num_ch, len(freqs), 3), dtype=np.double)
dif = np.empty((num_slt, num_ch, len(freqs)), dtype=np.double)
a1 = 1. - a
a2 = a
for idx_slt in range(num_slt):
for idx_ch in range(num_ch):
doa[idx_slt, idx_ch, :, 0] = np.interp(freqs, f_qt_c,
qgrid[doa_idx_stream[idx_slt, idx_ch, :], 0])
doa[idx_slt, idx_ch, :, 1] = np.interp(freqs, f_qt_c,
qgrid[doa_idx_stream[idx_slt, idx_ch, :], 1])
doa[idx_slt, idx_ch, :, 2] = np.interp(freqs, f_qt_c,
qgrid[doa_idx_stream[idx_slt, idx_ch, :], 2])
dif[idx_slt, idx_ch, :] = np.interp(freqs, f_qt_c,
qdifbins[dif_idx_stream[idx_slt, idx_ch, :]])
doa_s = a1 * doa
doa_s[0, ...] = doa[0, ...]
doa_s[1:, ...] += a2 * doa[:-1, ...]
dif_s = a1 * dif
dif_s[0, ...] = dif[0, ...]
dif_s[1:, ...] += a2 * dif[:-1, ...]
return doa_s, dif_s
def formulate_M_Y(doa, dif, N_sph, B_nm_exp, beta, num_recov, B_nm_low):
"""
Get mixing matrix M and SH expansion Y.
Parameters
----------
doa : np.ndarray
dif : np.ndarray
N_sph : int
B_nm_exp : np.ndarray
beta : np.ndarray
num_recov : int
B_nm_low : np.ndarray
Returns
-------
M : np.ndarray
Y : np.ndarray
References
----------
C. Hold, L. McCormack, A. Politis and V. Pulkki, "Optimizing Higher-Order
Directional Audio Coding with Adaptive Mixing and Energy Matching for
Ambisonic Compression and Upmixing," 2023 IEEE WASPAA.
"""
num_slt = doa.shape[0]
num_bands = doa.shape[2]
num_ch = doa.shape[1]
azi, zen = cart2dir(doa[..., 0], doa[..., 1], doa[..., 2])
v_dir = np.stack((np.reshape(azi, -1), np.reshape(zen, -1)), axis=1)
Y_ = safpy.sh.getSHreal_part(int(np.sqrt(num_recov) - 1), N_sph, v_dir)
Y = Y_.reshape((N_sph+1)**2, num_slt, num_ch, num_bands)
M = beta[np.newaxis, :, np.newaxis] * (1 - dif) * Y + dif * B_nm_exp
M[:num_recov, ...] = B_nm_low
return M, Y
def opt_gain(X_nm, Y, dif, ene_s, C_f_dif, orne, M_mavg):
"""
Post processing optimal mix/match gain to spatial model covariance.
Parameters
----------
X_nm : np.ndarray
Y : np.ndarray
dif : np.ndarray
ene_s : np.ndarray
C_f_dif : np.ndarray
orne : float
M_mavg : np.ndarray
Returns
-------
gp : np.ndarray
References
----------
C. Hold, L. McCormack, A. Politis and V. Pulkki, "Optimizing Higher-Order
Directional Audio Coding with Adaptive Mixing and Energy Matching for
Ambisonic Compression and Upmixing," 2023 IEEE WASPAA.
"""
num_slt = X_nm.shape[0]
num_sh = X_nm.shape[1]
ene_dir = (1-dif) * ene_s
ene_dif = dif * ene_s
# Cyd = 4*np.pi/(8*num_sh_out) * np.sum(Y * ene_dir[np.newaxis, ...] * Y,
# axis=(2, 3))
Cyd = 4*np.pi/(num_slt*num_sh) * np.einsum('ldsk,ldsk->lk',
Y * ene_dir, Y)
Cyd += 1/(num_slt*num_sh) * np.einsum('dsk,sll->lk', ene_dif, C_f_dif)
Cyd *= orne
Cyn = M_mavg @ Cyd
Cxn = 1/num_slt * (M_mavg @ np.real(np.einsum('dlk,dlk->lk',
X_nm, X_nm.conj())))
gp = np.sqrt(Cyn / (10e-10 + Cxn))
return gp
# PARAMETERIZATION
def get_f_quantizer(num_bands, DEFAULT=True):
"""
Get default frequency band quantizer.
Parameters
----------
num_bands : int
DESCRIPTION.
DEFAULT : bool, optional
False switches to log spaced. The default is True.
Returns
-------
f_qt : list of tuples
"""
if DEFAULT:
f_qt = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 6), (6, 8), (8, 10),
(10, 15), (15, 20), (20, 25), (25, 30),
(30, 38), (38, 50), (50, 75), (75, 100), (100, num_bands)]
else:
s = np.append([1], np.ceil(np.geomspace(2, num_bands, 15)).astype(int))
s0 = np.append([0], s)
f_qt = [(s0[idx], s[idx]) for idx in range(len(s))]
return f_qt
def get_f_grouper(f_qt):
"""
Get frequency band grouping matrix.
Parameters
----------
f_qt : list[num_fgroups] of tuples(start_idx, end_idx)
Returns
-------
M_grouper : np.ndarray
"""
num_fgroups = len(f_qt)
num_bands = max(max(f_qt)) - min(min(f_qt))
M_grouper = np.zeros((num_fgroups, num_bands))
for group, qt in enumerate(f_qt):
M_grouper[group, qt[0]:qt[1]] = 1
M_grouper[group, :] /= np.sum(M_grouper[group, :])
return M_grouper.T
def get_C_weighting(freqs):
"""
Get C weighting for frequency weighting.
Parameters
----------
freqs : np.ndarray
Returns
-------
r_C : np.ndarray
"""
r_C = (12194**2 * (freqs+1)**2) / \
(((freqs+1)**2 + 20.6**2) *
((freqs+1)**2 + 12194**2))
return r_C
def get_num_sh_recov(A_nm, B_nm):
"""
Estimate number of recovered SH channels.
Parameters
----------
A_nm : np.ndarray
B_nm : np.ndarray
Returns
-------
num_recov : int
"""
d_recov = np.diag(B_nm @ A_nm)
if np.min(d_recov > 0.9):
num_recov = len(d_recov)
else:
num_recov = np.argmax(d_recov <= 0.9)
return num_recov
def get_cov_dif(N_sph, num_ch, conf):
"""
Specify model covariance for diffuse components.
Parameters
----------
N_sph : int
num_ch : int
conf : struct
Configuration struct.
Returns
-------
C_dif : np.ndarray
Covariance matrix stacked as [num_ch, num_sh, num_sh].
"""
num_sh = (N_sph + 1)**2
y_sec = spa.sph.sh_matrix(N_sph, conf['tc_v'][0], conf['tc_v'][1])
C_dif = np.ones((num_ch, num_sh, num_sh))
C_dif = 4*np.pi * np.array([np.outer(y_sec[s, :], y_sec[s, :])
for s in range(num_ch)])
return C_dif
def sph_filterbank_reconstruction(A_nm):
"""
Complementary spherical filterbank reconstruction of A.
Parameters
----------
A_nm : np.ndarray
Returns
-------
B_nm : np.ndarray
B_nm_trunc : np.ndarray
num_recov : int
References
----------
C. Hold, V. Pulkki, A. Politis and L. McCormack, "Compression of
Higher-Order Ambisonic Signals Using Directional Audio Coding," in
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024.
"""
B_nm = np.linalg.pinv(A_nm)
num_recov = get_num_sh_recov(A_nm, B_nm)
B_nm_trunc = np.linalg.pinv(A_nm[:, :num_recov])
return B_nm, B_nm_trunc, num_recov
# WRITE
def encode_pars(pars_status, doa_q_stream, dif_q_stream):
"""
Write parameter stream.
Parameters
----------
pars_status : dict
DESCRIPTION.
doa_q_stream : array_like
DESCRIPTION.
dif_q_stream : array_like
DESCRIPTION.
Returns
-------
data_pars_status : TYPE
DESCRIPTION.
data_pars_stream : TYPE
DESCRIPTION.
"""
data_pars_status = pars_status
data_pars_stream = bz2.compress(np.asarray([doa_q_stream, dif_q_stream]))
return data_pars_status, data_pars_stream
def encode_tcs(tc_sigs, tc_bitrate, fs):
"""
Write transport audio channels stream.
Parameters
----------
tc_sigs : np.ndarray
DESCRIPTION.
user_pars : TYPE
DESCRIPTION.
fs : TYPE
DESCRIPTION.
Returns
-------
data_tcs : TYPE
DESCRIPTION.
enc_lookahead : TYPE
DESCRIPTION.
"""
# spa.io.save_audio(1/(np.sqrt(4*np.pi))*tc_sigs.T,
# './audio/hoacTCs.wav', fs)
# print("Compressing Audio")
# libpath = Path(libpath).expanduser()
# subprocess.run([libpath/"opusenc",
# "--bitrate", f"{user_pars['bitrate']*tc_sigs.shape[0]}",
# "--channels", "discrete",
# "./audio/hoacTCs.wav",
# "./transport-data/hoacTCs_enc.hoac"])
num_ch = tc_sigs.shape[0]
num_samples = tc_sigs.shape[1]
assert fs == 48000, "Opus expected 48kHz, please resample."
mapping = list(range(num_ch))
enc = pylibopus.MultiStreamEncoder(fs, num_ch, num_ch, 0, mapping,
pylibopus.APPLICATION_AUDIO)
enc.bitrate = int(tc_bitrate * 1000 * num_ch)
enc.complexity = 10
enc_lookahead = enc.lookahead # check last
frame_size = 960
assert frame_size >= enc_lookahead
audio_in = 1/(np.sqrt(4*np.pi)) * tc_sigs.T
audio_in = np.append(audio_in, np.zeros((frame_size, num_ch)), axis=0)
sample_idx = 0
opus_data = []
package_idx = 0
if np.max(np.abs(audio_in)) > 1.0:
warn("Audio TCs clipping!")
while sample_idx + frame_size <= num_samples + frame_size:
opus_package = enc.encode_float(
audio_in[sample_idx:sample_idx+frame_size, :].astype(np.float32).tobytes(),
frame_size)
opus_data.append(opus_package)
sample_idx += frame_size
package_idx += 1
return opus_data, enc_lookahead
def write_hoac(pars_status, doa_q_stream, dif_q_stream, tc_sigs, file):
"""
Write HOAC file.
Parameters
----------
pars_status : TYPE
DESCRIPTION.
doa_q_stream : TYPE
DESCRIPTION.
dif_q_stream : TYPE
DESCRIPTION.
tc_sigs : TYPE
DESCRIPTION.
file : Path
HOAC file.
Returns
-------
None.
"""
# threads = []
# threads.append(threading.Thread(target=write_pars,
# args=[pars_status, pars_stream]))
# threads.append(threading.Thread(target=write_tcs,
# args=[tc_sigs, user_pars, fs, libpath]))
# [t.start() for t in threads]
# [t.join() for t in threads]
if pars_status['bitrateTC'] > 0:
data_tcs, enc_lookahead = encode_tcs(tc_sigs, pars_status['bitrateTC'],
pars_status['fs'])
pars_status['enc_lookahead'] = enc_lookahead
else:
data_tcs = 1/(np.sqrt(4*np.pi)) * tc_sigs
pars_status['enc_lookahead'] = 0
pars_status['hoac_version'] = HOAC_VERSION
data_pars_status, data_pars_stream = encode_pars(pars_status,
doa_q_stream,
dif_q_stream)
with open(file, "wb") as f:
pickle.dump(data_pars_status, f)
pickle.dump(data_pars_stream, f)
pickle.dump(data_tcs, f)
def read_hoac(file):
"""
Read HOAC file.
Parameters
----------
file : Path
HOAC file.
Returns
-------
conf : TYPE
DESCRIPTION.
sig_tc : TYPE
DESCRIPTION.
doa_idx : TYPE
DESCRIPTION.
dif_idx : TYPE
DESCRIPTION.
"""
# with bz2.open("./transport-data/hoac.pars", 'rb') as f_pars:
with open(file, 'rb') as f_hoac:
print('Reading Pars')
conf = pickle.load(f_hoac)
c_pars = pickle.load(f_hoac)
data_tcs = pickle.load(f_hoac)
assert (conf['hoac_version'] == get_version())
num_slots = conf['blocksize'] // conf['hopsize']
pars = np.reshape(np.frombuffer(bz2.decompress(c_pars),
dtype=np.int16),
(2, -1, num_slots, conf['numTC'],
conf['numFreqs'])).copy()
if conf['metaDecimate'] > 1:
pars[:, :, :, :, 0] = pars[:, :, :, :, 1] # no information in DC
# pars = np.repeat(pars, conf['metaDecimate'], axis=2) # upsample
pars_f = pars.copy()
pars_lo = pars_f[:, :, ::conf['metaDecimate'], :, :conf['metaDecimateFreqLim']]
pars_lo = np.repeat(pars_lo, conf['metaDecimate'], axis=2) # upsample
pars = np.concatenate((pars_lo, pars_f[:, :, :, :, conf['metaDecimateFreqLim']:]), axis=-1)
doa_idx = pars[0, ...]
dif_idx = pars[1, ...]
print("Decoding Audio")
# libpath = Path(libpath).expanduser()
# subprocess.run([libpath/"opusdec",
# "--float",
# "./transport-data/hoacTCs_enc.hoac",
# "./audio/hoacTCs_opusdec.wav"])
# sig_tc = spa.io.load_audio("./audio/hoacTCs_opusdec.wav")
num_frames = len(data_tcs)
num_ch = conf['numTC']
assert (conf['fs'] == 48000)
fs = conf['fs']
if conf['bitrateTC'] > 0:
frame_size = 960
mapping = list(range(num_ch))
dec = pylibopus.MultiStreamDecoder(fs, num_ch, num_ch, 0, mapping)
enc_lookahead = conf['enc_lookahead']
audio_out = np.zeros((frame_size * num_frames + enc_lookahead, num_ch))
sample_idx = 0
for package_idx in range(num_frames):
opus_package = data_tcs[package_idx]
b_res = dec.decode_float(opus_package, frame_size)
res = np.frombuffer(b_res, dtype=np.float32)
audio_out[sample_idx:sample_idx+frame_size, :] = res.reshape((frame_size, num_ch))
sample_idx += frame_size
audio_out = audio_out[enc_lookahead: -frame_size, :]
else:
audio_out = data_tcs.T
sig_tc = spa.sig.MultiSignal([*audio_out.T], fs=fs)
return conf, sig_tc, doa_idx, dif_idx