|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pyplot as plt |
| 3 | +import scipy |
| 4 | + |
| 5 | +import pygsp |
| 6 | +from pygsp import utils |
| 7 | + |
| 8 | +from hexfft import HexArray, ifft |
| 9 | +from hexfft.plot import hexshow |
| 10 | +from hexfft.array import generate_grid |
| 11 | + |
| 12 | +# --------------------------------------------------- |
| 13 | +W = np.array([[0., 0., 1., 1., 0.], |
| 14 | + [0., 0., 1., 1., 1.], |
| 15 | + [1., 1., 0., 0., 1.], |
| 16 | + [1., 1., 0., 0., 0.], |
| 17 | + [0., 1., 1., 0., 0.]]) |
| 18 | + |
| 19 | +g = pygsp.graphs.Graph(W) |
| 20 | +g.set_coordinates() |
| 21 | +g.plot_signal(np.ones(5)) |
| 22 | + |
| 23 | + |
| 24 | +f = np.random.randn(5) |
| 25 | +print(f) |
| 26 | +fig, ax = plt.subplots() |
| 27 | +g.plot_signal(f, ax=ax) |
| 28 | +ax.set_title("Random signal") |
| 29 | + |
| 30 | +# --------------------------------------------------- |
| 31 | +# 1D (ring graph) |
| 32 | + |
| 33 | +N = 32 |
| 34 | +rg = pygsp.graphs.Ring(N) |
| 35 | +sine = np.sin(2*np.pi*np.arange(N)/N) |
| 36 | +rg.plot_signal(sine) |
| 37 | + |
| 38 | +rg.compute_fourier_basis() |
| 39 | +fig, ax = plt.subplots() |
| 40 | +rg.plot_signal(rg.U[:, 3], ax=ax) |
| 41 | +ax.set_title("3rd graph Laplacian eigenvector") |
| 42 | + |
| 43 | +# adjacency matrix |
| 44 | +fig, ax = plt.subplots() |
| 45 | +ax.matshow(rg.W.toarray()) |
| 46 | +ax.set_title("N=32 Ring graph adjacency matrix") |
| 47 | + |
| 48 | +fig, axs = plt.subplots(4, 8) |
| 49 | +for i, ax in enumerate(axs.flat): |
| 50 | + ax.plot(rg.U[:, i]) |
| 51 | +fig.suptitle("N=32 Ring Graph: Eigenvector modes") |
| 52 | + |
| 53 | +Uf = np.zeros((N, N), np.complex128) |
| 54 | +for i in range(N): |
| 55 | + Uf[:, i] = np.exp(-2.j * np.pi * i * np.arange(N) / N) |
| 56 | +fig, axs = plt.subplots(4, 8) |
| 57 | +for i, ax in enumerate(axs.flat): |
| 58 | + ax.plot(Uf[:, i], "red") |
| 59 | +fig.suptitle("N=32 Ring Graph: Fourier modes") |
| 60 | + |
| 61 | +fig, axs = plt.subplots(6, 3) |
| 62 | +axs[0, 0].plot(np.sqrt(32)*rg.U[:, 0]) |
| 63 | +axs[0, 0].set_yticks([0.95, 1, 1.05]) |
| 64 | +axs[0, 2].plot(Uf[:, 0], "red") |
| 65 | +axs[0, 0].set_title("Eigenvector modes", color="blue") |
| 66 | +axs[0, 2].set_title("Fourier modes (real part)", color="red") |
| 67 | +for i in range(5): |
| 68 | + axs[i+1, 0].plot(4*rg.U[:, 2*i+1]) |
| 69 | + axs[i+1, 1].plot(4*rg.U[:, 2*i + 2]) |
| 70 | + axs[i+1, 2].plot(Uf[:, i+1], "red") |
| 71 | +for i, ax in enumerate(axs.flat): |
| 72 | + ax.set_xticks([0, 16]) |
| 73 | + if i % 3 ==1: |
| 74 | + ax.set_yticklabels([]) |
| 75 | + ax.yaxis.set_visible(False) |
| 76 | + if i % 3 == 2: |
| 77 | + ax.yaxis.tick_right() |
| 78 | + ax.yaxis.set_label_position("right") |
| 79 | + ax.set_ylabel(f" k={i//3}", rotation=0,fontdict=dict(weight='bold')) |
| 80 | + if i not in [17, 16, 15]: |
| 81 | + ax.set_xticklabels([]) |
| 82 | + |
| 83 | +fig.suptitle("Ring graph: Graph Fourier basis vs 1D Fourier basis\n\n") |
| 84 | + |
| 85 | +# eigenvalues |
| 86 | +eigs = np.sort(np.linalg.eigvals(rg.L.toarray())) |
| 87 | +eigs_analytic = np.sort(np.array([2*(1-np.cos(2*np.pi * k / N)) for k in range(N)])) |
| 88 | + |
| 89 | +fig, ax = plt.subplots() |
| 90 | +ax.plot(np.sort(eigs)[::-1]) |
| 91 | +ax.set_ylabel("λi ", rotation=0, fontsize=16) |
| 92 | +ax.set_xlabel("i", fontsize=16) |
| 93 | +fig.suptitle("Graph Laplacian Eigenvalues: N=32 Ring Graph") |
| 94 | + |
| 95 | + |
| 96 | +# --------------------------------------------------- |
| 97 | +# 2D (square graph) |
| 98 | + |
| 99 | +N1, N2 = 12, 12 |
| 100 | +sg = pygsp.graphs.Grid2d(N1, N2) |
| 101 | +sg.plot_signal(np.ones(N1*N2)) |
| 102 | + |
| 103 | +fig, ax = plt.subplots() |
| 104 | +ax.matshow(sg.W.toarray()) |
| 105 | +ax.set_title("Adjacency matrix for 6x6 square lattice graph") |
| 106 | + |
| 107 | +N1, N2 = 12, 12 |
| 108 | +circ = np.zeros(N1*N2) |
| 109 | +circ[[1, N2, N1*N2-N2, N1*N2-1]] = 1 |
| 110 | +adj = scipy.linalg.circulant(circ).T |
| 111 | + |
| 112 | +psg = pygsp.graphs.Graph(W=adj) |
| 113 | +psg.set_coordinates() |
| 114 | +fig, ax = plt.subplots() |
| 115 | +psg.plot_signal(np.ones(N1*N2), ax=ax) |
| 116 | +ax.set_title("6x6 toroid graph (square lattice with periodic boundary conditions)") |
| 117 | + |
| 118 | +fig, ax = plt.subplots() |
| 119 | +ax.matshow(adj) |
| 120 | +ax.set_title("Adjacency matrix for 6x6 square lattice graph\n[periodic boundary conditions]") |
| 121 | + |
| 122 | +sg.compute_fourier_basis() |
| 123 | + |
| 124 | +analytic_U = np.zeros((N1*N2, N1*N2)) |
| 125 | +for k in range((N1*N2)): |
| 126 | + analytic_U[:, k] = np.exp(2.j * np.pi * k * np.arange(N1*N2)/(N1*N2)) |
| 127 | + |
| 128 | +fig, axs = plt.subplots(4, 4) |
| 129 | +for i, ax in enumerate(axs.flat): |
| 130 | + ax.matshow(sg.U[:, i].reshape(N1, N2)) |
| 131 | +fig.suptitle("12x12 Square Graph: Eigenvector modes (no periodic boundary conditions)") |
| 132 | + |
| 133 | +Uf = np.zeros((N1, N2, N1, N2), np.complex128) |
| 134 | +x, y = np.meshgrid(np.arange(N1), np.arange(N2), indexing="xy") |
| 135 | +for i in range(N1): |
| 136 | + for j in range(N2): |
| 137 | + Uf[i, j, :, :] = np.exp(2.j * np.pi * (i*x/N1+j*y/N2)) |
| 138 | +fig, axs = plt.subplots(4, 4) |
| 139 | +for i in range(4): |
| 140 | + for j in range(4): |
| 141 | + axs[i, j].matshow(np.real(Uf[i, j, :, :])) |
| 142 | +fig.suptitle("12x12 Square Graph: Fourier modes") |
| 143 | + |
| 144 | +eigs_noboundary = np.linalg.eigvals(sg.L.toarray()) |
| 145 | +eigs_boundary = np.linalg.eigvals(psg.L.toarray()) |
| 146 | +eigs_analytic = np.sort( |
| 147 | + np.array( |
| 148 | + [4-2*np.cos(2*np.pi*k/(N1**2)) - 2*np.cos(2*np.pi*k/N1) |
| 149 | + for k in range(N1**2)] |
| 150 | + ) |
| 151 | +) |
| 152 | + |
| 153 | +fig, ax = plt.subplots() |
| 154 | +ax.plot(np.sort(eigs_noboundary)[::-1], label="numerical - no boundary conditions") |
| 155 | +ax.plot(np.sort(eigs_boundary)[::-1], label="numerical - with periodic boundary conditions") |
| 156 | +ax.plot(np.sort(eigs_analytic)[::-1], label="analytic - with periodic boundary conditions") |
| 157 | +fig.suptitle("Graph Laplacian eigenvalues: 12x12 Square Grid Graph") |
| 158 | +ax.legend() |
| 159 | + |
| 160 | +# --------------------------------------------------- |
| 161 | +# 2D (triangle graph) |
| 162 | + |
| 163 | + |
| 164 | +def TriangleGrid2d(N1, N2, periodic=True): |
| 165 | + W = np.zeros((N1*N2, N1*N2)) |
| 166 | + |
| 167 | + for i in range(N1*N2-1): |
| 168 | + j = i + 1 |
| 169 | + if j % N2 == 0: |
| 170 | + continue |
| 171 | + else: |
| 172 | + W[i, j] = 1. |
| 173 | + W[j, i] = 1. |
| 174 | + |
| 175 | + for i in range(N1): |
| 176 | + if i == 0: |
| 177 | + W[i, N2] = 1. |
| 178 | + for j in range(1, N2): |
| 179 | + W[i + j, N2 + j - 1: N2 + j + 1] = 1. |
| 180 | + elif i == N1 - 1 and i % 2 == 0: |
| 181 | + W[i*N2, i*N2 - N2] = 1. |
| 182 | + for j in range(1, N2): |
| 183 | + W[i*N2 + j, -N2 + i*N2 + j - 1: -N2 + i*N2 + j + 1] = 1. |
| 184 | + elif i % 2 == 0: |
| 185 | + W[i*N2, i*N2 + N2] = 1. |
| 186 | + W[i*N2, i*N2 - N2] = 1. |
| 187 | + for j in range(1, N2): |
| 188 | + W[i*N2 + j, N2 + i*N2 + j - 1: N2 + i*N2 + j + 1] = 1. |
| 189 | + W[i*N2 + j, -N2 + i*N2 + j - 1: -N2 + i*N2 + j + 1] = 1. |
| 190 | + |
| 191 | + if periodic: |
| 192 | + for i in range(N1): |
| 193 | + # side to side |
| 194 | + W[i*N2, (i+1)*N2 - 1] = 1. |
| 195 | + # slant right connections at sides |
| 196 | + if i % 2 == 0: |
| 197 | + W[i*N2, (i+2)*N2 -1] = 1. |
| 198 | + # slant left connections at sides |
| 199 | + W[i*N2-1, i*N2] = 1. |
| 200 | + for i in range(N2): |
| 201 | + # slant right connections at top |
| 202 | + W[i, N1*N2 - N2 + i] = 1. |
| 203 | + # slant left connections at top |
| 204 | + if i == 0: |
| 205 | + W[i, N1*N2-1] = 1. |
| 206 | + else: |
| 207 | + W[i, N1*N2 - N2 + i -1] = 1. |
| 208 | + |
| 209 | + # if periodic: |
| 210 | + # c0 = np.zeros(N1*N2) |
| 211 | + # c0[[1, N2-1, N2, N1*N2-N2, N1*N2-N2+1, N1*N2 - 1]] = 1. |
| 212 | + # c1 = np.zeros(N1*N2) |
| 213 | + # c1[[1, N2, N2+1, N1*N2-N2-1, N1*N2-N2, N1*N2-1]] = 1. |
| 214 | + |
| 215 | + # even_block = scipy.linalg.circulant(c0).T |
| 216 | + # odd_block = scipy.linalg.circulant(c1).T |
| 217 | + |
| 218 | + # for i in range(N1): |
| 219 | + # idx = slice(i*N1,(i+1)*N1) |
| 220 | + # if i % 2 == 0: |
| 221 | + # W[idx, :] = even_block[idx, :] |
| 222 | + # else: |
| 223 | + # W[idx, :] = odd_block[idx] |
| 224 | + |
| 225 | + W = W + W.T |
| 226 | + W[W > 0] = 1. |
| 227 | + |
| 228 | + # if periodic: |
| 229 | + # assert np.all(np.sum(W, 0) == 6) |
| 230 | + |
| 231 | + x, y = generate_grid((N1, N2), "offset") |
| 232 | + coords = np.stack([x.flatten(), y.flatten()]).T |
| 233 | + return pygsp.graphs.Graph(W=W, coords=coords) |
| 234 | + |
| 235 | +N1, N2 = 12, 12 |
| 236 | +tg = TriangleGrid2d(N1, N2, periodic=True) |
| 237 | +tg.plot_signal(np.ones(N1*N2)) |
| 238 | +fig, ax = plt.subplots() |
| 239 | +ax.matshow(tg.W.toarray()) |
| 240 | +fig.suptitle("Adjacency matrix for 6x6 hex grid\n") |
| 241 | +fig.tight_layout() |
| 242 | +# block circulant https://math.stackexchange.com/questions/4022364/eigenvalues-of-a-particular-block-circulant-matrix |
| 243 | + |
| 244 | +tg.compute_fourier_basis() |
| 245 | + |
| 246 | +fig, axs = plt.subplots(4, 4, figsize=(8, 8)) |
| 247 | +for i, ax in enumerate(axs.flat): |
| 248 | + hexshow(HexArray(tg.U[:, i+1].reshape(N1, N2)), ax=ax) |
| 249 | +fig.suptitle("12x12 Triange Graph: Eigenvector modes (with periodic boundary conds)\n") |
| 250 | +fig.tight_layout() |
| 251 | + |
| 252 | +fig, axs = plt.subplots(4, 4, figsize=(8, 8)) |
| 253 | +for i in range(4): |
| 254 | + for j in range(4): |
| 255 | + H = HexArray(np.zeros((N1, N2))) |
| 256 | + H[i, j] = 1. |
| 257 | + hexshow(np.real(ifft(H)), ax=axs[i, j]) |
| 258 | +fig.suptitle("12x12 Triangle Graph: Hexagonal Fourier modes\n") |
| 259 | +fig.tight_layout() |
| 260 | + |
| 261 | + |
| 262 | +eigs = np.linalg.eigvals(tg.L.toarray()) |
| 263 | +fig, ax = plt.subplots() |
| 264 | +ax.plot(np.sort(eigs)[::-1]) |
| 265 | +ax.set_ylabel("magnitude") |
| 266 | +ax.set_xlabel("eigenvalue idx (sorted)") |
| 267 | +fig.suptitle("Graph Laplacian eigenvalues: 12x12 Triangle Graph") |
0 commit comments