-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.Rmd
523 lines (413 loc) · 18.8 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
---
title: "The decline of waterfowl hunters in the United States"
author:
- "Christopher Chizinski"
date: '2022-04-22'
output:
xaringan::moon_reader:
css: [xaringan-themer.css, custom.css]
nature:
slideNumberFormat: "%current%"
highlightStyle: github
highlightLines: true
ratio: 16:9
countIncrementalSlides: false
---
```{r setup, include=FALSE}
options(htmltools.dir.version = FALSE)
knitr::opts_chunk$set(
fig.width=14,
fig.height=7,
fig.retina=3,
out.width = "100%",
cache = FALSE,
echo = FALSE,
message = FALSE,
warning = FALSE,
hiline = TRUE
)
library(tidyverse)
library(ggtext)
library(flipbookr)
library(xaringanthemer)
```
```{r xaringan-themer, include=FALSE, warning=FALSE}
style_duo(
primary_color = "#353535",
secondary_color = "#ffffff",
header_font_google = google_font("Martel"),
header_color = "#d9d9d9",
text_font_google = google_font("Lato"),
code_font_google = google_font("Fira Mono"),
base_font_size = "24px",
colors = c(
green = "#31b09e",
"green-dark" = "#2c8475",
grey = "#d3d3d380",
highlight = "#87f9bb",
purple = "#887ba3",
pink = "#B56B6F",
orange = "#f79334",
red = "#dc322f",
black = "#000000",
`blue-dark` = "#002b36",
`text-dark` = "#202020",
`text-darkish` = "#42424",
`text-mild` = "#606060",
`text-light` = "#9a9a9a",
`text-lightest` = "#eaeaea")
)
xaringanExtra::use_xaringan_extra(c("tile_view", "tachyons"))
xaringanExtra::use_extra_styles()
xaringanExtra::use_share_again()
theme_set(theme_xaringan())
theme_update(panel.grid = element_blank(),
axis.line = element_line(color = "#d9d9d9", size =1),
axis.ticks = element_line(color = "#d9d9d9", size =1),
axis.text = element_text(color = "#d9d9d9", size = 20),
plot.margin = margin(1,1,1,1, "cm"),
plot.caption = element_markdown(lineheight = 1.2, size = 10))
```
```{r metathis, echo=FALSE}
library(metathis)
meta() %>%
meta_general(
description = "Human dimensions assessments on the fall of waterfowl hunting in the US and what can be done.",
generator = "xaringan and remark.js"
) %>%
meta_name("github-repo" = "chrischizinski/wf-hunter-seminar-ttu") %>%
meta_social(
title = "Human dimensions assessments on the fall of waterfowl hunting in the US and what can be done.",
url = "https://chrischizinski.github.io/wf-hunter-seminar-ttu/",
image = "https://chrischizinski.github.io/wf-hunter-seminar-ttu/img/share-card.png",
image_alt = "The first slide of the presentation.",
og_type = "website",
og_author = "Christopher Chizinski",
twitter_card_type = "summary_large_image",
twitter_creator = "@chrischizinski"
)
```
background-image: url('img/Collaborators.png')
background-size: 80%
background-position: 50% 80%
## Collaborations
---
## Hunters and wildife management
```{r fundingsources}
cons_fund <- read_csv("data/conservation_funding.csv") %>%
mutate(Amount = as.numeric(gsub("%","",Amount)),
color = case_when(Level == "State agency" ~ "#8ECAE6",
Level == "Federal" ~"#FFB703",
Level == "State-level" ~ "#219EBC",
Level == "Other" ~ "#FB8500"),
Source2 = glue::glue("<span style='color:{color}'>{Source}</span>"),
Source2 = factor(Source2),
Source2 = fct_reorder(Source2, Amount),
Source2 = fct_relevel(Source2, "<span style='color:#FB8500'>Other</span>", after = 0))
ggplot(data = cons_fund) +
geom_col(aes(x = Source2, y = Amount), fill = "#EF233C") +
coord_flip(xlim = c(0.5,14.5), ylim = c(0,50), expand = FALSE) +
labs(x = "Funding source",
y = "Percentage",
caption = "<br>**Source**:AWFWA & AZGFD. 2017. The State Conservation Machine") +
theme(axis.text.y = element_markdown(size = 18, hjust = 1))
```
---
background-image: url('img/fedDuckStamp.png')
background-size: 80%
background-position: 50% 80%
## Waterfowl hunters fund even more
---
```{r bpopandStamps}
duckBpop <- read_csv("data/totalBpop.csv", col_types =c("n","n","n"))
duckstamps <- read_csv("data/Stamp-Sales-Over-the-Years.csv")
full_join(duckBpop, duckstamps, by = c("Year" = "Season")) %>%
arrange(Year) %>%
rename(duckStamps = `Stamps Sold`) %>%
mutate(duckStamps = duckStamps/1000) %>%
select(Year,Bpop,duckStamps) %>%
rename(`Breeding pop` = Bpop,
`US Duck Stamps` = duckStamps) %>%
filter(Year >= 1955 & Year <= 2010) -> stamps_hunters
stamps_hunters %>%
pivot_longer(-Year, names_to = "measure", values_to = "value") -> stamps_hunters_long
blank_data <- data.frame(Year = c(1955,1955,2010,2010),
measure = c("Breeding pop", "US Duck Stamps", "Breeding pop", "US Duck Stamps"),
value = c(50000,3000,15000,1000))
```
```{r bpopandStampsgraph, include = FALSE, echo = FALSE}
ggplot() +
geom_line(data = stamps_hunters_long %>% filter(Year <= 1993), aes(x = Year, y = value, color = measure), size = 1) +
geom_point(data = stamps_hunters_long %>% filter(Year <= 1993), aes(x = Year, y = value, color = measure), size = 3) +
geom_blank(data = blank_data, aes(x = Year, y = value, color = measure)) +
scale_y_continuous(labels = scales::comma)+
scale_color_manual(values=c("Breeding pop" = "#8ECAE6", "US Duck Stamps" = "#219EBC")) +
labs(y = "Value (x 1,000)", caption = ) +
theme(legend.position = "none") +
facet_wrap(~measure, ncol = 1, scales = "free") + #BREAK
annotate("rect", xmin = 1993.5, xmax = 2010, ymin = -Inf, ymax = Inf, fill = NA, color = "yellow") +
geom_line(data = stamps_hunters_long %>% filter(Year >= 1993), aes(x = Year, y = value, color = measure), size = 1) +
geom_point(data = stamps_hunters_long %>% filter(Year >= 1993), aes(x = Year, y = value, color = measure), size = 3)
```
`r chunk_reveal("bpopandStampsgraph", break_type = "user", display_type = "output", title = "## Hunters tracked with ducks")`
--
.footnote[**Loss** of $158 million (2022 US dollars); 42,500 to 80,900 fewer hectares<br>Vrtiska et al. (2013)]
---
## NAWMP
.pull-left[
> **Goal 1**: Abundant and resilient waterfowl populations to support hunting and other uses without imperiling habitat.
> **Goal 2**: Wetlands and related habitats sufficient to sustain waterfowl populations at desired levels, while providing places to recreate and ecological services that benefit society.
> .highlight[**Goal 3**: Growing numbers of waterfowl hunters, other conservationists, and citizens who enjoy and actively support waterfowl and wetlands conservation.]
]
.pull-right[
<img class="center_img" src="img/NAWMP2012.png" width="70%" />
]
---
class: center, middle
### There is a fundamental need to better understand the who, what, when, and why individuals do and do not participate in waterfowl hunting.
<br>
### Use this information to grow the number of people invested in waterfowl conservation.
---
background-image: url('img/research-outline.png')
background-size: contain
---
## Modeling methods
.footnote[.highlight[More detail: [Graham, K. (2019)](https://digitalcommons.unl.edu/natresdiss/303/)] ]
.pull-left[
<br>
- Used a capture-recapture approach to model parameters using state duck stamp purchase histories
- recruitment, retention, license purchase probability, and realized population growth rate
- Covariates: state, generation, rurality code, hunting opportunity, Ducks Unlimited (DU) membership
- Rurality and hunting location determined by zip code
- DU membership matched to state license databases
- Used the Anvil cloud supercomputers running the RMark package
]
.pull-right[
<img class="center_img" src="img/jacob_duck.png" width="75%" />
]
---
## Modeling takeaways
- Age matters: older individuals were more likely to retained and purchase on a regular basis, younger individuals are more likely to be recruited
- Rurality had a statistical influence but effect size was minimal
- Hunting opportunity a statistical influence but effect size was also minimal
- Variation in parameters among states
- Strong influence of conservation organization membership
---
background-image: url('img/state_growth_plot.png')
background-size: 65%
## Modeling takeaways::state patterns
```{r getmapdata}
# states_of_int <- urbnmapr::get_urbn_map(map = "states", sf = TRUE) %>%
# filter(state_abbv %in% c("MT", "MO", "SD", "KS", "NE"))
#
# map_ratio <- tmaptools::get_asp_ratio(states_of_int)
#
# labels_of_int <- urbnmapr::get_urbn_labels(map = "states", sf = TRUE) %>%
# filter(state_abbv %in% c("MT", "MO", "SD", "KS", "NE"))
# states_of_int %>%
# mutate(growth_rate = c(1.07,1.00,1.03,1.05, 1.07)) %>%
# ggplot() +
# geom_sf(aes(fill = growth_rate), color = "black") +
# scale_fill_viridis_c(expression("\u03BB"), limits = c(1,1.08), option="plasma") +
# geom_sf_text(data = labels_of_int,
# aes(label = state_name),
# size = 6,
# color = "black") +
# theme_void() +
# coord_sf() +
# theme(legend.position = c(0.25,0.35),
# legend.title = element_text(size = 22, hjust = 0.5, color = "#d9d9d9"),
# legend.text = element_text(size = 20, color = "#d9d9d9"),
# legend.key.size = unit(1, 'cm'),
# plot.background = element_rect(fill = "#353535", color = "#353535"),
# panel.background = element_rect(fill = "#353535", color = "#353535")) -> state_growth_plot
#
# ggsave(here::here("2022-04-TTUSeminar/img","state_growth_plot.png"), width = map_ratio*5, height=5)
```
---
## Modeling takeaways::DU membership
```{r betacoeffs}
betaCoefs <- read_csv("data/graham_betas.csv")
data_add <- data.frame(Parameter = c("Retention", "Retention", "Purchase", "Purchase"), Covariate = c("class 2", "class 8"), beta = c(0.33, 1.24, 0.50, 1.94))
data_add$p <- paste0("~",round(plogis(data_add$beta), 2))
ggplot(data = betaCoefs) +
geom_errorbar(aes(x = Covariate, ymax = UCI, ymin = LCI), width = 0.15) +
geom_point(aes(x = Covariate, y = beta, fill = Covariate), size = 4, shape = 21) +
geom_text(data = data_add, aes(x = Covariate, y = beta, label = p), position = position_nudge(x = 0.2), size = 8) +
facet_wrap(~Parameter, ncol = 1) +
scale_x_discrete(labels = c("Greenwing", "Basic", "Volunteer", "Sponsor", "Sponsor &\nVolunteer", "Major\nsponsor")) +
scale_fill_viridis_d(option = "inferno") +
labs(y = "Beta coefficient", x = "DU membership class") +
coord_cartesian(ylim = c(0, 3), xlim = c(0.5,6.5), expand = FALSE) +
theme(legend.position = "none")
```
.footnote[.highlight[No membership is the reference condition]
---
class: middle
### Modeling tells a lot about patterns and ability to forecast trends in participation.<br><br>It tells us little about the underlying social mechanisms influencing those patterns.
---
## Survey methods
.footnote[.highlight[More detail: [Hinrichs, M. (2019)](https://digitalcommons.unl.edu/natresdiss/282/)]; [Hinrichs et al. (2021)](https://www.tandfonline.com/doi/abs/10.1080/10871209.2020.1858208); [Hinrichs et al. (2021)](https://wildlife.onlinelibrary.wiley.com/doi/full/10.1002/wsb.1241); Hinrichs et al. *Accepted pending revision*]
.pull-left[
- Used a web-based questionnaire with an email invitation
- Sampled hunters and anglers in 8 states
- Used two waves of invitations during summer
- Invitations sent to +88,000 individuals
- 7,875 responded and agreed to participate
- Asked questions about motivations, constraints, and attitudes toward scenarios to increase waterfowl participation
]
.pull-right[
<img class="center_img" src="img/conceptualization.png" width="100%" />
]
---
## Survey takeaways::motivations
.footnote[
.highlight[
More detail: [Hinrichs et al. (2021)](https://www.tandfonline.com/doi/abs/10.1080/10871209.2020.1858208)
]
]
```{r hinrichmotivation}
motivs <- read_csv("data/hinrich_motivation.csv") %>%
mutate(Motivation = factor(Motivation, levels = c("Nature", "Social", "Challenge", "Food")))
ggplot(data = motivs, aes(x = Motivation, y = Mean, ymax = Mean + SD, ymin = Mean - SD, group = Group)) +
geom_errorbar(position = position_dodge(width = 0.6), width = 0.4, alpha = 0.5, color = "white") +
geom_point(aes(fill = Group), position = position_dodge(width = 0.6), size = 4, shape = 21, color = "white") +
coord_cartesian(xlim = c(0.5, 4.5), ylim = c(0.5,5.5), expand = FALSE)+
scale_y_continuous(labels = c("Not at all", "Slightly", "Moderately", "Important","Very"), breaks = 1:5) +
scale_fill_viridis_d(option = "turbo") +
labs(y = "Importance") +
theme(legend.position = c(0.35,0.15),
legend.title = element_blank(),
legend.text = element_text(size = 14))
```
---
background-image: url('img/state_motivations.png')
background-size: 65%
## Survey takeaways::motivations
```{r}
# states_of_int <- urbnmapr::get_urbn_map(map = "states", sf = TRUE) %>%
# filter(state_abbv %in% c("MT", "MO", "SD", "KS", "NE","OK","MI","WY"))
#
# labels_of_int <- urbnmapr::get_urbn_labels(map = "states", sf = TRUE) %>%
# filter(state_abbv %in% c("MT", "MO", "SD", "KS", "NE","OK","MI","WY"))
#
# map_ratio <- tmaptools::get_asp_ratio(states_of_int)
#
# ggplot(data = states_of_int) +
# geom_sf(color = "white", fill = "#d9d9d9") +
# geom_sf_text(data = labels_of_int,
# aes(label = state_name),
# size = 4,
# color = "black") +
# coord_sf() +
# labs(caption = "No *meaningful* spatial differences in motivations") +
# theme_void() +
# theme(plot.background = element_rect(fill = "#353535", color = "#353535"),
# panel.background = element_rect(fill = "#353535", color = "#353535"),
# plot.caption = element_markdown(size = 10, color = "white"))
#
# ggsave(here::here("2022-04-TTUSeminar/img","state_motivations.png"), width = map_ratio*5, height=5)
```
.footnote[
.highlight[
More detail: [Hinrichs et al. (2021)](https://www.tandfonline.com/doi/abs/10.1080/10871209.2020.1858208)
]
]
---
```{r hinrichconstraints}
constraints <- read_csv("data/hinrich_constraint.csv") %>%
group_by(Constraint) %>%
mutate(meanC = mean(Mean)) %>%
ungroup() %>%
mutate(Constraint = case_when(Constraint == "Waterfowl Hunting Skills"~"Waterfowl\nSkills",
Constraint == "Land Access/Permissions"~"Land Access\nPermissions",
Constraint == "Other Hunters"~"Other\nHunters",
Constraint == "Waterfowl Populations"~"Waterfowl\nPopulations",
Constraint == "Views of Others"~"Views of\nOthers",
TRUE ~ Constraint),
Constraint = as.factor(Constraint),
Constraint = forcats::fct_reorder(Constraint,desc(meanC)),
Group = case_when(Group == "Dissociated" ~ "Dissociated WF",
Group == "Frequent" ~ "Frequent WF",
Group == "Sporadic" ~ "Sporadic WF",
Group == "Hunter" ~ "Non-WF hunter",
TRUE ~ Group),
Group = factor(Group, levels = c("Frequent WF", "Sporadic WF", "Dissociated WF", "Non-WF hunter", "Angler")))
```
```{r hinrichconstraints_plot, include = FALSE, echo = FALSE}
ggplot(data = constraints, aes(x = Constraint, y = Mean, ymax = Mean + SD, ymin = Mean - SD, group = Group)) +
geom_errorbar(position = position_dodge(width = 0.6), width = 0.4, alpha = 0.5, color = "white") +
geom_point(aes(fill = Group), position = position_dodge(width = 0.6), size = 4, shape = 21, color = "white") +
coord_cartesian(xlim = c(0.5, 7.5), ylim = c(0,4), expand = FALSE)+
scale_y_continuous(labels = c("Not at all", "Slightly", "Moderately", "Very","Extremely" )) +
scale_fill_viridis_d(guide = guide_legend(label.position = "bottom", override.aes = list(size = 10)))+
labs(y = "Limiting") +
theme(legend.position = "bottom",
legend.title = element_blank(),
legend.text = element_text(size = 14),
legend.key.size = unit(1, "mm")) + #BREAK
annotate('rect', xmin = 0.65, xmax = 2.5, ymin = 0.1, ymax = 3.9, fill = NA, color = "yellow") + #BREAK
annotate('rect', xmin = 5.65, xmax = 6.5, ymin = 0.1, ymax = 3.9, fill = NA, color = "yellow")
```
`r chunk_reveal("hinrichconstraints_plot", break_type = "user", display_type = "output", title = "## Survey takeaways::constraints")`
---
background-image: url('img/state_constraints.png')
background-size: 65%
## Survey takeaways::constraints
---
background-image: url('img/scenarios1.png')
background-size: 100%
## Survey takeaways::scenarios
---
background-image: url('img/scenarios2.png')
background-size: 100%
## Survey takeaways::scenarios
---
background-image: url('img/scenarios3.png')
background-size: 100%
## Survey takeaways::scenarios
---
## Experimental regulations::Two tier
- Nebraska and South Dakota implemented an experimental Two-tier system of harvest regulations
- approved by the the U.S. Fish and Wildlife Service for the 2021/22 hunting season and extended through 4 hunting seasons
- Hunters select one of two different regulatory options when registering through the Harvest Information Program (HIP) for duck hunting
- Tier I have 6 duck limit with species and sex limits
- Tier II have a reduced bag limit of 3 ducks per day but no sex or species-specific restrictions
- Hunters remain in selected tier for the entire duck season
- Checked by law enforcement on the hunter’s HIP identification card
- The social and ecological effects are being evaluated
- Parts collections for all Tier II
- Several surveys
---
## Experimental regulations::Two tier
.pull-left[
### Objectives
1. Maintain or increase conservation support by increasing waterfowl hunting participation
2. Help assure the continuation of waterfowl hunting heritage
3. Maintain sustainable populations of all ducks
4. Increase funding for waterfowl management and conservation
5. Minimize monitoring and administrative costs of implementing, maintaining, and monitoring such a system]
.pull-right[
<img class="center_img" src="img/duck_hunter.png" width="70%" />
]
---
background-image: url('img/firstSeason.png')
background-size: 100%
## Two-tier::first-year takeaways
---
## Final points
- Individuals that participate in wildlife-based recreation do so for similar reasons
- No one "strong" reason why people are constrained in recreating
- Likely the combination of a bunch of small things
- Waterfowl management is unique in the social-ecological approach to addressing this problem
- "Experiments" may lead to new insights
- Addressing funding for conservation is an increasing worry.
- Continued work will be required to address funding wildlife management and conservation
- R3 will likely be only part of the solution
---
class: center, middle
This research was supported by several Federal Aid in Sport Fish and Wildlife Restoration projects, which were administered by the Nebraska Game and Parks Commission.
<br>
<br>
<br>
[.red[cchizinski2[at]unl.edu]](mailto:cchizinski2@unl.edu) | [.red[humandimensions.unl.edu]](https://humandimensions.unl.edu/)