-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathresize.py
47 lines (35 loc) · 2.27 KB
/
resize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch.nn.functional as F
def match_sizes(match_size, top, bottom, m=None):
top_layer = top.clone()
bottom_layer = bottom.clone()
mask = None
# Resize top_layer and mask to match bottom_layer
if match_size == 'stretch':
top_layer = F.interpolate(top_layer.permute(0, 3, 1, 2), size=(bottom_layer.shape[1], bottom_layer.shape[2]), mode='bilinear', align_corners=False).permute(0, 2, 3, 1)
if m is not None:
# Resize mask to match bottom_layer size
mask = F.interpolate(m.unsqueeze(1), size=(bottom_layer.shape[1], bottom_layer.shape[2]), mode='nearest').squeeze(1).clone()
else:
# Calculate the scale factors for both dimensions separately
scale_factor_h = bottom_layer.shape[1] / top_layer.shape[1]
scale_factor_w = bottom_layer.shape[2] / top_layer.shape[2]
# Use the correct scale factor to resize the top_layer
scale_factor = max(scale_factor_w, scale_factor_h) # must grow/shrink while covering both dimensions of bottom_layer
new_h = round(top_layer.shape[1] * scale_factor)
new_w = round(top_layer.shape[2] * scale_factor)
# Resize top_layer while keeping aspect ratio constant
top_layer = F.interpolate(top_layer.permute(0, 3, 1, 2), size=(new_h, new_w), mode='bilinear', align_corners=False).permute(0, 2, 3, 1)
# Crop top_layer to match bottom_layer size
top_layer = top_layer[:, :bottom_layer.shape[1], :bottom_layer.shape[2], :]
if m is not None:
# Calculate the scale factors for both dimensions separately for mask
scale_factor_mask_h = bottom_layer.shape[1] / m.shape[1]
scale_factor_mask_w = bottom_layer.shape[2] / m.shape[2]
# Use the correct scale factor to resize the mask
scale_factor_mask = max(scale_factor_mask_w, scale_factor_mask_h) # must grow to cover both dimensions
new_h_mask = round(m.shape[1] * scale_factor_mask)
new_w_mask = round(m.shape[2] * scale_factor_mask)
# Resize and crop mask in the same way
mask = F.interpolate(m.unsqueeze(1), size=(new_h_mask, new_w_mask), mode='nearest').squeeze(1).clone()
mask = mask[:, :bottom_layer.shape[1], :bottom_layer.shape[2]]
return top_layer, mask