-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
135 lines (110 loc) · 3.81 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
"""
Flask app entry point. Loads data from database file and a trained model
from a .pkl file. Creates routes, builds Plotly graphs.
"""
# import libraries
import os
import json
import plotly
import pandas as pd
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from flask import Flask
from flask import render_template, request, jsonify
from plotly.graph_objs import Bar, Histogram
import joblib
from sqlalchemy import create_engine
app = Flask(__name__)
def tokenize(text):
tokens = word_tokenize(text)
lemmatizer = WordNetLemmatizer()
clean_tokens = []
for tok in tokens:
clean_tok = lemmatizer.lemmatize(tok).lower().strip()
clean_tokens.append(clean_tok)
return clean_tokens
# run.py
# load data
dbpath = os.path.abspath("data/DisasterResponse.db")
engine = create_engine("sqlite:///" + dbpath)
try:
df = pd.read_sql_table("DisasterResponse", engine)
except:
assert os.path.exists(dbpath), "The db file doesn't exist"
# load model
modelpath = os.path.abspath("models/classifier.pkl")
try:
model = joblib.load(modelpath)
except:
assert os.path.exists(modelpath), "The model file doesn't exist"
# index webpage displays cool visuals and receives user input text for model
@app.route("/")
@app.route("/index")
def index():
# extract data needed for visuals
# TODO: Below is an example - modify to extract data for your own visuals
genre_counts = df.groupby("genre").count()["message"]
genre_names = list(genre_counts.index)
categories_perc = df.iloc[:, 4:].sum()
category_names = [c.replace("_", " ") for c in df.iloc[:, 4:].columns]
df["message_length"] = df["message"].str.len()
# create visuals
# TODO: Below is an example - modify to create your own visuals
graphs = [
{
"data": [Bar(x=category_names, y=categories_perc)],
"layout": {
"title": "Messages categories",
"yaxis": {"title": "Count"},
"xaxis": {
"title": "Categories",
"tickangle": 25,
"title_standoff": 100,
},
},
},
{
"data": [
Histogram(x=df["message_length"], y=df["message_length"].value_counts())
],
"layout": {
"title": "Message length frequency",
"yaxis": {"title": "Frequency"},
"xaxis": {
"title": "Message length (chars)",
# "tickangle": 45,
"title_standoff": 100,
},
},
},
{
"data": [Bar(x=genre_names, y=genre_counts)],
"layout": {
"title": "Distribution of Message Genres",
"yaxis": {"title": "Count"},
"xaxis": {"title": "Genre"},
},
},
]
# encode plotly graphs in JSON
ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)]
graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder)
# render web page with plotly graphs
return render_template("master.html", ids=ids, graphJSON=graphJSON)
# web page that handles user query and displays model results
@app.route("/go")
def go():
# save user input in query
query = request.args.get("query", "")
# use model to predict classification for query
classification_labels = model.predict([query])[0]
classification_results = dict(zip(df.columns[4:], classification_labels))
# This will render the go.html Please see that file.
return render_template(
"go.html", query=query, classification_result=classification_results
)
def main():
app.run(debug=True, host="0.0.0.0", port=int(os.environ.get("PORT", 8080)))
if __name__ == "__main__":
main()