-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
80 lines (63 loc) · 2.52 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import keras.backend as K
from keras.losses import binary_crossentropy
import tensorflow as tf
### DICE
def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_loss(y_true, y_pred):
return 1-dice_coef(y_true, y_pred)
### BORDER
def get_border(y_true):
mask = (25,25)
pos = y_true
neg = 1-y_true
pos = K.pool2d(pos, pool_size=mask, padding='same')
neg = K.pool2d(neg, pool_size=mask, padding='same')
border = pos * neg
return border
def border_dice_coef(y_true, y_pred):
border = get_border(y_true)
flat_border = K.flatten(border)
flat_y_true = K.flatten(y_true)
flat_y_pred = K.flatten(y_pred)
border_y_true = K.tf.gather(flat_y_true, K.tf.where(flat_border > 0.5))
border_y_pred = K.tf.gather(flat_y_pred, K.tf.where(flat_border > 0.5))
return dice_coef(border_y_true, border_y_pred)
def border_dice_loss(y_true, y_pred):
return 1 - border_dice_coef(y_true, y_pred)
### DICE + BORDER LOSS
def dice_border_loss(y_true, y_pred):
return (border_dice_loss(y_true, y_pred) * 0.05 +
(dice_loss(y_true, y_pred) * 0.95))
### BCE
def bce_dice_loss(y_true, y_pred):
return 0.5 * binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
### FOCAL
def binary_focal_loss(gamma=2., alpha=.25):
"""
Binary form of focal loss.
FL(p_t) = -alpha * (1 - p_t)**gamma * log(p_t)
where p = sigmoid(x), p_t = p or 1 - p depending on if the label is 1 or 0, respectively.
References:
https://arxiv.org/pdf/1708.02002.pdf
Usage:
model.compile(loss=[binary_focal_loss(alpha=.25, gamma=2)], metrics=["accuracy"], optimizer=adam)
"""
def binary_focal_loss_fixed(y_true, y_pred):
"""
:param y_true: A tensor of the same shape as `y_pred`
:param y_pred: A tensor resulting from a sigmoid
:return: Output tensor.
"""
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
epsilon = K.epsilon()
# clip to prevent NaN's and Inf's
pt_1 = K.clip(pt_1, epsilon, 1. - epsilon)
pt_0 = K.clip(pt_0, epsilon, 1. - epsilon)
return -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) \
-K.sum((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0))
return binary_focal_loss_fixed