-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathAdafruit_NeoPixel.cpp
518 lines (464 loc) · 18 KB
/
Adafruit_NeoPixel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
Modified to work with TM1829 digital RGB stripes (ALDI Süd Digital RGB Steifen)
Changed high/low in 16Mhz / 800kHz section
Runs ONLY @ 800kHz
*/
/*--------------------------------------------------------------------
Arduino library to control a wide variety of WS2811-based RGB LED
devices such as Adafruit FLORA RGB Smart Pixels. Currently handles
400 and 800 KHz bitstreams on both 8 MHz and 16 MHz ATmega MCUs,
with LEDs wired for RGB or GRB color order. 8 MHz MCUs provide
output on PORTB and PORTD, while 16 MHz chips can handle most output
pins (possible exception with some of the upper PORT registers on
the Arduino Mega).
WILL NOT COMPILE OR WORK ON ARDUINO DUE. Uses inline assembly.
Written by Phil Burgess / Paint Your Dragon for Adafruit Industries.
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
--------------------------------------------------------------------
This file is part of the Adafruit NeoPixel library.
NeoPixel is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
NeoPixel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with NeoPixel. If not, see
<http://www.gnu.org/licenses/>.
--------------------------------------------------------------------*/
#include "Adafruit_NeoPixel.h"
Adafruit_NeoPixel::Adafruit_NeoPixel(uint16_t n, uint8_t p, uint8_t t) {
numBytes = n * 3;
if((pixels = (uint8_t *)malloc(numBytes))) {
memset(pixels, 0, numBytes);
numLEDs = n;
type = t;
pin = p;
port = portOutputRegister(digitalPinToPort(p));
pinMask = digitalPinToBitMask(p);
endTime = 0L;
} else {
numLEDs = 0;
}
}
void Adafruit_NeoPixel::begin(void) {
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
#ifdef __arm__
static inline void delayShort(uint32_t) __attribute__((always_inline, unused));
static inline void delayShort(uint32_t num)
{
asm volatile(
"L_%=_delayMicroseconds:" "\n\t"
"subs %0, #1" "\n\t"
"bne L_%=_delayMicroseconds" "\n"
//#if F_CPU == 48000000
//"nop" "\n\t"
//#endif
: "+r" (num) :
);
}
#endif // __arm__
void Adafruit_NeoPixel::show(void) {
if(!numLEDs) return;
volatile uint16_t
i = numBytes; // Loop counter
volatile uint8_t
*ptr = pixels, // Pointer to next byte
b = *ptr++, // Current byte value
hi, // PORT w/output bit set high
lo; // PORT w/output bit set low
// Data latch = 50+ microsecond pause in the output stream.
// Rather than put a delay at the end of the function, the ending
// time is noted and the function will simply hold off (if needed)
// on issuing the subsequent round of data until the latch time has
// elapsed. This allows the mainline code to start generating the
// next frame of data rather than stalling for the latch.
while((micros() - endTime) < 50L);
// endTime is a private member (rather than global var) so that
// mutliple instances on different pins can be quickly issued in
// succession (each instance doesn't delay the next).
// In order to make this code runtime-configurable to work with
// any pin, SBI/CBI instructions are eschewed in favor of full
// PORT writes via the OUT or ST instructions. It relies on two
// facts: that peripheral functions (such as PWM) take precedence
// on output pins, so our PORT-wide writes won't interfere, and
// that interrupts are globally disabled while data is being issued
// to the LEDs, so no other code will be accessing the PORT. The
// code takes an initial 'snapshot' of the PORT state, computes
// 'pin high' and 'pin low' values, and writes these back to the
// PORT register as needed.
cli(); // Disable interrupts; need 100% focus on instruction timing
#ifdef __AVR__
#if (F_CPU == 8000000UL) // FLORA, Lilypad, Arduino Pro 8 MHz, etc.
if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
volatile uint8_t n1, n2 = 0; // First, next bits out
// Squeezing an 800 KHz stream out of an 8 MHz chip requires code
// specific to each PORT register. At present this is only written
// to work with pins on PORTD or PORTB, the most likely use case --
// this covers all the pins on the Adafruit Flora and the bulk of
// digital pins on the Arduino Pro 8 MHz (keep in mind, this code
// doesn't even get compiled for 16 MHz boards like the Uno, Mega,
// Leonardo, etc., so don't bother extending this out of hand).
// Additional PORTs could be added if you really need them, just
// duplicate the else and loop and change the PORT. Each add'l
// PORT will require about 150(ish) bytes of program space.
// 10 instruction clocks per bit: HHxxxxxLLL
// OUT instructions: ^ ^ ^
if(port == &PORTD) {
hi = PORTD | pinMask;
lo = hi & ~pinMask;
n1 = hi;
if(b & 0x80) n1 = hi;
// Dirty trick here: meaningless MULs are used to delay two clock
// cycles in one instruction word (rather than using two NOPs).
// This was necessary in order to squeeze the loop down to exactly
// 64 words -- the maximum possible for a relative branch.
asm volatile(
"headD:\n\t" // Clk Pseudocode
// Bit 7:
"out %0, %4\n\t" // 1 PORT = hi
"mov %3, %1\n\t" // 1 n2 = lo
"out %0, %2\n\t" // 1 PORT = n1
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 6\n\t" // 1-2 if(b & 0x40)
"mov %3, %4\n\t" // 0-1 n2 = hi
"out %0, %1\n\t" // 1 PORT = lo
"mul r0, r0\n\t" // 2 nop nop
// Bit 6:
"out %0, %4\n\t" // 1 PORT = hi
"mov %2, %1\n\t" // 1 n1 = lo
"out %0, %3\n\t" // 1 PORT = n2
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 5\n\t" // 1-2 if(b & 0x20)
"mov %2, %4\n\t" // 0-1 n1 = hi
"out %0, %1\n\t" // 1 PORT = lo
"mul r0, r0\n\t" // 2 nop nop
// Bit 5:
"out %0, %4\n\t" // 1 PORT = hi
"mov %3, %1\n\t" // 1 n2 = lo
"out %0, %2\n\t" // 1 PORT = n1
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 4\n\t" // 1-2 if(b & 0x10)
"mov %3, %4\n\t" // 0-1 n2 = hi
"out %0, %1\n\t" // 1 PORT = lo
"mul r0, r0\n\t" // 2 nop nop
// Bit 4:
"out %0, %4\n\t" // 1 PORT = hi
"mov %2, %1\n\t" // 1 n1 = lo
"out %0, %3\n\t" // 1 PORT = n2
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 3\n\t" // 1-2 if(b & 0x08)
"mov %2, %4\n\t" // 0-1 n1 = hi
"out %0, %1\n\t" // 1 PORT = lo
"mul r0, r0\n\t" // 2 nop nop
// Bit 3:
"out %0, %4\n\t" // 1 PORT = hi
"mov %3, %1\n\t" // 1 n2 = lo
"out %0, %2\n\t" // 1 PORT = n1
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 2\n\t" // 1-2 if(b & 0x04)
"mov %3, %4\n\t" // 0-1 n2 = hi
"out %0, %1\n\t" // 1 PORT = lo
"mul r0, r0\n\t" // 2 nop nop
// Bit 2:
"out %0, %4\n\t" // 1 PORT = hi
"mov %2, %1\n\t" // 1 n1 = lo
"out %0, %3\n\t" // 1 PORT = n2
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 1\n\t" // 1-2 if(b & 0x02)
"mov %2, %4\n\t" // 0-1 n1 = hi
"out %0, %1\n\t" // 1 PORT = lo
"mul r0, r0\n\t" // 2 nop nop
// Bit 1:
"out %0, %4\n\t" // 1 PORT = hi
"mov %3, %1\n\t" // 1 n2 = lo
"out %0, %2\n\t" // 1 PORT = n1
"mul r0, r0\n\t" // 2 nop nop
"sbrc %5, 0\n\t" // 1-2 if(b & 0x01)
"mov %3, %4\n\t" // 0-1 n2 = hi
"out %0, %1\n\t" // 1 PORT = lo
"sbiw %6, 1\n\t" // 2 i-- (dec. but don't act on zero flag yet)
// Bit 0:
"out %0, %4\n\t" // 1 PORT = hi
"mov %2, %1\n\t" // 1 n1 = lo
"out %0, %3\n\t" // 1 PORT = n2
"ld %5, %a7+\n\t" // 2 b = *ptr++
"sbrc %5, 7\n\t" // 1-2 if(b & 0x80)
"mov %2, %4\n\t" // 0-1 n1 = hi
"out %0, %1\n\t" // 1 PORT = lo
"brne headD\n" // 2 while(i) (zero flag determined above)
::
"I" (_SFR_IO_ADDR(PORTD)), // %0
"r" (hi), // %1
"r" (n1), // %2
"r" (n2), // %3
"r" (lo), // %4
"r" (b), // %5
"w" (i), // %6
"e" (ptr) // %a7
); // end asm
} else if(port == &PORTB) {
// Same as above, just switched to PORTB and stripped of comments.
hi = PORTB | pinMask;
lo = hi & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headB:\n\t"
"out %0, %1\n\t"
"mov %3, %4\n\t"
"out %0, %2\n\t"
"mul r0, r0\n\t"
"sbrc %5, 6\n\t"
"mov %3, %1\n\t"
"out %0, %4\n\t"
"mul r0, r0\n\t"
"out %0, %1\n\t"
"mov %2, %4\n\t"
"out %0, %3\n\t"
"mul r0, r0\n\t"
"sbrc %5, 5\n\t"
"mov %2, %1\n\t"
"out %0, %4\n\t"
"mul r0, r0\n\t"
"out %0, %1\n\t"
"mov %3, %4\n\t"
"out %0, %2\n\t"
"mul r0, r0\n\t"
"sbrc %5, 4\n\t"
"mov %3, %1\n\t"
"out %0, %4\n\t"
"mul r0, r0\n\t"
"out %0, %1\n\t"
"mov %2, %4\n\t"
"out %0, %3\n\t"
"mul r0, r0\n\t"
"sbrc %5, 3\n\t"
"mov %2, %1\n\t"
"out %0, %4\n\t"
"mul r0, r0\n\t"
"out %0, %1\n\t"
"mov %3, %4\n\t"
"out %0, %2\n\t"
"mul r0, r0\n\t"
"sbrc %5, 2\n\t"
"mov %3, %1\n\t"
"out %0, %4\n\t"
"mul r0, r0\n\t"
"out %0, %1\n\t"
"mov %2, %4\n\t"
"out %0, %3\n\t"
"mul r0, r0\n\t"
"sbrc %5, 1\n\t"
"mov %2, %1\n\t"
"out %0, %4\n\t"
"mul r0, r0\n\t"
"out %0, %1\n\t"
"mov %3, %4\n\t"
"out %0, %2\n\t"
"mul r0, r0\n\t"
"sbrc %5, 0\n\t"
"mov %3, %1\n\t"
"out %0, %4\n\t"
"sbiw %6, 1\n\t"
"out %0, %1\n\t"
"mov %2, %4\n\t"
"out %0, %3\n\t"
"ld %5, %a7+\n\t"
"sbrc %5, 7\n\t"
"mov %2, %1\n\t"
"out %0, %4\n\t"
"brne headB\n" :: "I" (_SFR_IO_ADDR(PORTB)), "r" (hi),
"r" (n1), "r" (n2), "r" (lo), "r" (b), "w" (i), "e" (ptr)
); // end asm
} // endif PORTB
} // end 800 KHz, see comments later re 'else'
#elif (F_CPU == 16000000UL)
#elif ((F_CPU == 16500000UL) && defined(__AVR_ATtiny85__))
if((type & NEO_SPDMASK) == NEO_KHZ400) {
// Empty case. 400 KHz pixels not supported on 16.5 MHz ATtiny85.
} // See comments later re 'else'
// 800 KHz pixel support on 16.5 MHz ATtiny is experimental and
// NOT guaranteed to work. It's essentially the same loop as the
// 16 MHz ATmega code...as a result, the timing is slightly off
// (825 KHz vs 800), but the WS2811 datasheet suggests this is
// within the allowable margin of error.
#else
#error "CPU SPEED NOT SUPPORTED"
#endif
// This bizarre floating 'else' is intentional. Only one of the above
// blocks is actually compiled (depending on CPU speed), each with one
// specific 'if' case for pixel speed. This block now handles the
// common alternate case for either: 800 KHz pixels w/16 MHz CPU, or
// 400 KHz pixels w/8 MHz CPU. Instruction timing is the same.
// Can use nested loop; no need for unrolling. Very similar to
// 16MHz/400KHz code above, but with fewer NOPs and different end.
// 20 inst. clocks per bit: HHHHxxxxxxxxxxxxLLLL
// ST instructions: ^ ^ ^
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = hi & ~pinMask;
next = hi;
bit = 8;
asm volatile(
"head20:\n\t" // Clk Pseudocode (T = 0)
"st %a0, %5\n\t" // 2 PORT = hi (T = 2)
"sbrc %2, 7\n\t" // 1-2 if(b & 128)
"mov %4, %5\n\t" // 0-1 next = hi (T = 4)
"st %a0, %4\n\t" // 2 PORT = next (T = 6)
"mov %4, %1\n\t" // 1 next = lo (T = 7)
"dec %3\n\t" // 1 bit-- (T = 8)
"breq nextbyte20\n\t" // 1-2 if(bit == 0)
"rol %2\n\t" // 1 b <<= 1 (T = 10)
#ifdef __AVR_ATtiny85__
"nop\n\t" // 1 ea.
"nop\n\t" // No MUL on ATtiny
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
#else
"mul r0, r0\n\t" // 2 nop nop (T = 12)
"mul r0, r0\n\t" // 2 nop nop (T = 14)
"mul r0, r0\n\t" // 2 nop nop (T = 16)
#endif
"st %a0, %1\n\t" // 2 PORT = lo (T = 18)
"rjmp head20\n\t" // 2 -> head20 (next bit out)
"nextbyte20:\n\t" // (T = 10)
"nop\n\t" // 1 nop (T = 11)
"ldi %3, 8\n\t" // 1 bit = 8 (T = 12)
"ld %2, %a6+\n\t" // 2 b = *ptr++ (T = 14)
"sbiw %7, 1\n\t" // 2 i-- (T = 16)
"st %a0, %1\n\t" // 2 PORT = lo (T = 18)
"brne head20\n\t" // 2 if(i != 0) -> head20 (next byte)
::
"e" (port), // %a0
"r" (hi), // %1
"r" (b), // %2
"r" (bit), // %3
"r" (next), // %4
"r" (lo), // %5
"e" (ptr), // %a6
"w" (i) // %7
); // end asm
#endif // __AVR__
#ifdef __MK20DX128__ // Teensy 3.0
// This implementation may not be quite perfect, but it seems to work
// reasonably well with an actual 20 LED WS2811 strip. The timing at
// 48 MHz is off a bit, perhaps due to flash cache misses? Ideally
// this code should execute from RAM to eliminate slight timing
// differences between flash caches hits and misses. But it seems to
// quite well. More testing is needed with longer strips.
#if F_CPU == 96000000
#define DELAY_800_T0H 2
#define DELAY_800_T0L 25
#define DELAY_800_T1H 16
#define DELAY_800_T1L 11
#define DELAY_400_T0H 8
#define DELAY_400_T0L 56
#define DELAY_400_T1H 33
#define DELAY_400_T1L 31
#elif F_CPU == 48000000
#define DELAY_800_T0H 1
#define DELAY_800_T0L 13
#define DELAY_800_T1H 8
#define DELAY_800_T1L 6
#define DELAY_400_T0H 4
#define DELAY_400_T0L 29
#define DELAY_400_T1H 16
#define DELAY_400_T1L 17
#elif F_CPU == 24000000
#error "24 MHz not supported, use Tools > CPU Speed at 48 or 96 MHz"
#endif
uint8_t *p = pixels;
uint8_t *end = pixels + numBytes;
volatile uint8_t *set = portSetRegister(pin);
volatile uint8_t *clr = portClearRegister(pin);
if ((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
while (p < end) {
uint8_t pix = *p++;
for (int mask = 0x80; mask; mask >>= 1) {
if (pix & mask) {
*set = 1;
delayShort(DELAY_800_T1H);
*clr = 1;
delayShort(DELAY_800_T1L);
} else {
*set = 1;
delayShort(DELAY_800_T0H);
*clr = 1;
delayShort(DELAY_800_T0L);
}
}
}
} else { // 400 kHz bitstream
while (p < end) {
uint8_t pix = *p++;
for (int mask = 0x80; mask; mask >>= 1) {
if (pix & mask) {
*set = 1;
delayShort(DELAY_400_T1H);
*clr = 1;
delayShort(DELAY_400_T1L);
} else {
*set = 1;
delayShort(DELAY_400_T0H);
*clr = 1;
delayShort(DELAY_400_T0L);
}
}
}
}
#endif // __MK20DX128__ Teensy 3.0
sei(); // Re-enable interrupts
endTime = micros(); // Note EOD time for latch on next call
}
// Set pixel color from separate R,G,B components:
void Adafruit_NeoPixel::setPixelColor(
uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
if(n < numLEDs) {
if(b == 0xFF) b = 0xFE;
uint8_t *p = &pixels[n * 3];
if((type & NEO_COLMASK) == NEO_GRB) { *p++ = b; *p++ = r; }
else { *p++ = r; *p++ = g; }
*p = g;
}
}
// Set pixel color from 'packed' 32-bit RGB color:
void Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
if(n < numLEDs) {
uint8_t *p = &pixels[n * 3];
if((type & NEO_COLMASK) == NEO_GRB) { *p++ = c >> 8; *p++ = c >> 16; }
else { *p++ = c >> 16; *p++ = c >> 8; }
*p = c;
}
}
// Convert separate R,G,B into packed 32-bit RGB color.
// Packed format is always RGB, regardless of LED strand color order.
uint32_t Adafruit_NeoPixel::Color(uint8_t r, uint8_t g, uint8_t b) {
return ((uint32_t)r << 16) | ((uint32_t)b << 8) | g;
//return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
// Query color from previously-set pixel (returns packed 32-bit RGB value)
uint32_t Adafruit_NeoPixel::getPixelColor(uint16_t n) {
if(n < numLEDs) {
uint16_t ofs = n * 3;
return (uint32_t)(pixels[ofs + 2]) |
(((type & NEO_COLMASK) == NEO_GRB) ?
((uint32_t)(pixels[ofs ]) << 8) |
((uint32_t)(pixels[ofs + 1]) << 16)
:
((uint32_t)(pixels[ofs ]) << 16) |
((uint32_t)(pixels[ofs + 1]) << 8) );
}
return 0; // Pixel # is out of bounds
}
uint16_t Adafruit_NeoPixel::numPixels(void) {
return numLEDs;
}