Skip to content

Latest commit

 

History

History
201 lines (145 loc) · 6.74 KB

README.md

File metadata and controls

201 lines (145 loc) · 6.74 KB

skylibs

Tools used for LDR/HDR environment map (IBL) handling, conversion and I/O.

Install & Develop

Install using:

pip install --upgrade skylibs

To develop skylibs, clone the repository and execute python setup.py develop

OpenEXR & Spherical harmonics

To read and save exr files, install the following dependencies (works on win/mac/linux):

conda install -c conda-forge openexr-python openexr

Spherical Harmonics

To use the spherical harmonics functionalities, install the following dependency (works on mac/linux):

conda install -c conda-forge pyshtools

envmap

Example usage:

from envmap import EnvironmentMap

e = EnvironmentMap('envmap.exr', 'latlong')
e_angular = e.copy().convertTo('angular')
e_angular_sa = e_angular.solidAngles()

envmap.EnvironmentMap Environment map class. Converts easily between those formats:

  • latlong (equirectangular)
  • angular
  • sphere
  • cube
  • skyangular
  • skylatlong
  • fisheye

Coordinates system

Skylibs employs the following right-handed coordinates system: +X = right, +Y = up, +z = towards the camera. Here is its latitude-longitude map (see code below):

latlong coordinates system

Available methods:

  • .copy(): deepcopy the instance.
  • .solidAngles(): provides the solid angle for each pixel of the current representation.
  • .convertTo(targetFormat): convert to the targetFormat.
  • .rotate(rotation): rotate the environment map using a Direction Cosine Matrix (DCM).
  • .resize(targetHeight): resize the environment map. Down-scaling will use energy-preserving interpolation (best results with integer downscales), which may introduce aliasing.
  • .toIntensity(mode, colorspace): convert to grayscale.
  • .getHemisphere(normal): returns a mask of the hemisphere visible from a surface with normal.
  • .setHemisphereValue(normal, value): sets all pixels visible from a surface with normal to value.
  • .getMeanLightVectors(normals): compute the mean light vector of the environment map for the given normals.
  • .project(vfov, rotation_matrix, ar, resolution, projection, mode): Extract a rectified image from the panorama, simulating a camera with field-of-view vfov, extrinsics rotation_matrix, aspect ratio ar, resolution.
  • .embed(self, vfov, rotation_matrix, image): inverse of project, embeds an image in the environment map.
  • .imageCoordinates(): returns the (u, v) coordinates at each pixel center.
  • .worldCoordinates(): returns the (x, y, z, valid) world coordinates for each pixel center, with mask valid (anything outside this mask does not project to the world).
  • .world2image(x, y, z): returns the (u, v) coordinates of the vector (x, y, z).
  • .image2world(u, v): returns the (x, y, z) coordinates of the coordinates (u, v).
  • .interpolate(u, v, valid): interpolates the envmap to coordinates (u, v) masked with valid.

Projection, cropping, simulating a camera

To perform a crop from pano.jpg:

import numpy as np
from imageio import imread, imsave
from envmap import EnvironmentMap, rotation_matrix


e = EnvironmentMap('pano.jpg', 'latlong')

dcm = rotation_matrix(azimuth=np.pi/6,
                      elevation=np.pi/8,
                      roll=np.pi/12)
crop = e.project(vfov=85., # degrees
                 rotation_matrix=dcm,
                 ar=4./3.,
                 resolution=(640, 480),
                 projection="perspective",
                 mode="normal")

crop = np.clip(255.*crop, 0, 255).astype('uint8')
imsave("crop.jpg", crop, quality=90)

hdrio

imread and imwrite/imsave supporting the folloring formats:

  • exr (ezexr)
  • cr2, nef, raw (dcraw)
  • hdr, pic (custom, beta)
  • tiff (tifffile)
  • All the formats supported by imageio

ezexr

Internal exr reader and writer, relies on python-openexr.

tools3d

  • getMaskDerivatives(mask): creates the dx+dy from a binary mask.
  • NfromZ: derivates the normals from a depth map surf.
  • ZfromN: Integrates a depth map from a normal map normals.
  • display.plotDepth: Creates a 3-subplot figure that shows the depth map Z and two side views.
  • spharm.SphericalHarmonic Spherical Harmonic Transform (uses pyshtools)

Example usage of spharm:

from envmap import EnvironmentMap
from tools3d import spharm

e = EnvironmentMap('envmap.exr', 'latlong')
sh = spharm.SphericalHarmonic(e)
print(sh.coeffs)
reconstruction = sh.reconstruct(height=64)

hdrtools

Tonemapping using pfstools.

Changelog

  • 0.7.2: ezexr.imwrite() now orders correctly channels when > 10 are used.
  • 0.7.1: Added sunFromPySolar (Thank Ian!) and support for alpha values and imageio v3 in ezexr(thanks Hong-Xing!).
  • 0.7.0: Fixed .setHemisphereValue(), added mode to .toIntensity(), fixed angular and sphere projections for normals [0, 0, ±1], added .getHemisphere(normal).
  • 0.6.8: Fixed resizing to be energy-preserving when downscaling; fixed conversion that shifted the envmap by half a pixel
  • 0.6.7: Fixed image envmap embedding to fit the projection coordinates; fixed crash in imwrite with specific channel names
  • 0.6.6: Fixed aspect ratio when embedding
  • 0.6.5: Added envmap embed feature
  • 0.6.4: Removed pyshtools as mandatory dependency
  • 0.6.3: Removed custom OpenEXR bindings (can be easily installed using conda)
  • 0.6.2: Removed rotlib dependency
  • 0.6.1: Aspect ratio in project() now in pixels
  • 0.6: Updated the transport matrix Blender plugin to 2.8+

Roadmap

  • Improved display for environment maps (change intensity with keystroke/button)
  • Standalone ezexr on all platforms (investigate pyexr)
  • add worldCoordinates() output in spherical coordinates instead of (x, y, z)
  • Add assert that data is float32 in convertTo/resize (internal bugs in scipy interpolation)

Code for the coordinates system figure

import numpy as np
from matplotlib import pyplot as plt
from envmap import EnvironmentMap

sz = 1024
e = EnvironmentMap(sz, 'cube', channels=3)
e.data[:sz//4,:,:] = [0, 1, 0]                   # +Y
e.data[sz//4:int(0.5*sz),:,:] = [1, 0, 1]        # -Y
e.data[:,int(0.5*sz):,:] = [1, 0, 0]             # +X
e.data[:,:int(0.25*sz),:] = [0, 1, 1]            # -X
e.data[int(3/4*sz):,:,:] = [0, 0, 1]             # +Z
e.data[int(0.5*sz):int(3/4*sz):,:,:] = [1, 1, 0] # -Z
e.convertTo('latlong')

def getCoords(normal):
    u, v = e.world2image(*normal)
    return [u*e.data.shape[1], v*e.data.shape[0]]

plt.imshow(e.data)
plt.text(*(getCoords([1, 0, 0]) + ["+X"]))
plt.text(*(getCoords([-1, 0, 0]) + ["-X"]))
plt.text(*(getCoords([0, 1, 0]) + ["+Y"]))
plt.text(*(getCoords([0, -1, 0]) + ["-Y"]))
plt.text(*(getCoords([0, 0, 1]) + ["+Z"]))
plt.text(*(getCoords([0, 0, -1]) + ["-Z"]))
plt.axis('off')
plt.savefig('coordinates.png', bbox_inches="tight", dpi=200)
plt.show()