forked from JiawangBian/SC-SfMLearner-Release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pose.py
129 lines (102 loc) · 4.58 KB
/
test_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from skimage.transform import resize as imresize
import numpy as np
from path import Path
import argparse
from tqdm import tqdm
import models
from inverse_warp import pose_vec2mat
from kitti_eval.pose_evaluation_utils import test_framework_KITTI as test_framework
parser = argparse.ArgumentParser(description='Script for PoseNet testing with corresponding groundTruth from KITTI Odometry',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("pretrained_posenet", type=str,
help="pretrained PoseNet path")
parser.add_argument("--img-height", default=256, type=int, help="Image height")
parser.add_argument("--img-width", default=832, type=int, help="Image width")
parser.add_argument("--dataset-dir", type=str, help="Dataset directory")
parser.add_argument('--sequence-length', type=int, metavar='N',
help='sequence length for testing', default=5)
parser.add_argument(
"--sequences", default=['09'], type=str, nargs='*', help="sequences to test")
parser.add_argument("--output-dir", default=None, type=str,
help="Output directory for saving predictions in a big numpy file")
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
@torch.no_grad()
def main():
args = parser.parse_args()
weights = torch.load(args.pretrained_posenet)
pose_net = models.PoseNet().to(device)
pose_net.load_state_dict(weights['state_dict'], strict=False)
pose_net.eval()
seq_length = 5
dataset_dir = Path(args.dataset_dir)
framework = test_framework(dataset_dir, args.sequences, seq_length)
print('{} snippets to test'.format(len(framework)))
errors = np.zeros((len(framework), 2), np.float32)
if args.output_dir is not None:
output_dir = Path(args.output_dir)
output_dir.makedirs_p()
predictions_array = np.zeros((len(framework), seq_length, 3, 4))
for j, sample in enumerate(tqdm(framework)):
imgs = sample['imgs']
h, w, _ = imgs[0].shape
if (h != args.img_height or w != args.img_width):
imgs = [imresize(img, (args.img_height, args.img_width)).astype(
np.float32) for img in imgs]
imgs = [np.transpose(img, (2, 0, 1)) for img in imgs]
tensor_imgs = []
for i, img in enumerate(imgs):
img = ((torch.from_numpy(img).unsqueeze(
0) / 255 - 0.5) / 0.5).to(device)
tensor_imgs.append(img)
global_pose = np.identity(4)
poses = []
poses.append(global_pose[0:3, :])
for iter in range(seq_length - 1):
pose = pose_net(tensor_imgs[iter], tensor_imgs[iter + 1])
pose_mat = pose_vec2mat(pose).squeeze(0).cpu().numpy()
pose_mat = np.vstack([pose_mat, np.array([0, 0, 0, 1])])
global_pose = global_pose @ np.linalg.inv(pose_mat)
poses.append(global_pose[0:3, :])
final_poses = np.stack(poses, axis=0)
if args.output_dir is not None:
predictions_array[j] = final_poses
ATE, RE = compute_pose_error(sample['poses'], final_poses)
errors[j] = ATE, RE
mean_errors = errors.mean(0)
std_errors = errors.std(0)
error_names = ['ATE', 'RE']
print('')
print("Results")
print("\t {:>10}, {:>10}".format(*error_names))
print("mean \t {:10.4f}, {:10.4f}".format(*mean_errors))
print("std \t {:10.4f}, {:10.4f}".format(*std_errors))
if args.output_dir is not None:
np.save(output_dir/'predictions.npy', predictions_array)
def compute_pose_error(gt, pred):
RE = 0
snippet_length = gt.shape[0]
scale_factor = np.sum(gt[:, :, -1] * pred[:, :, -1]
)/np.sum(pred[:, :, -1] ** 2)
ATE = np.linalg.norm(
(gt[:, :, -1] - scale_factor * pred[:, :, -1]).reshape(-1))
for gt_pose, pred_pose in zip(gt, pred):
# Residual matrix to which we compute angle's sin and cos
R = gt_pose[:, :3] @ np.linalg.inv(pred_pose[:, :3])
s = np.linalg.norm([R[0, 1]-R[1, 0],
R[1, 2]-R[2, 1],
R[0, 2]-R[2, 0]])
c = np.trace(R) - 1
# Note: we actually compute double of cos and sin, but arctan2 is invariant to scale
RE += np.arctan2(s, c)
return ATE/snippet_length, RE/snippet_length
def compute_pose(pose_net, tgt_img, ref_imgs):
poses = []
for ref_img in ref_imgs:
pose = pose_net(tgt_img, ref_img).unsqueeze(1)
poses.append(pose)
poses = torch.cat(poses, 1)
return poses
if __name__ == '__main__':
main()