forked from microsoft/onnxruntime-extensions
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_pyops.py
232 lines (194 loc) · 8.83 KB
/
test_pyops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import onnx
import unittest
import numpy as np
from numpy.testing import assert_almost_equal
from onnx import helper, onnx_pb as onnx_proto
import onnxruntime as _ort
from onnxruntime_extensions import (
onnx_op, PyCustomOpDef, make_onnx_model,
get_library_path as _get_library_path)
def _create_test_model_test():
nodes = [helper.make_node('CustomOpOne', ['input_1', 'input_2'], ['output_1'],
domain='ai.onnx.contrib'),
helper.make_node('CustomOpTwo', ['output_1'], ['output'],
domain='ai.onnx.contrib')]
input0 = helper.make_tensor_value_info(
'input_1', onnx_proto.TensorProto.FLOAT, [3, 5])
input1 = helper.make_tensor_value_info(
'input_2', onnx_proto.TensorProto.FLOAT, [3, 5])
output0 = helper.make_tensor_value_info(
'output', onnx_proto.TensorProto.INT32, [3, 5])
graph = helper.make_graph(nodes, 'test0', [input0, input1], [output0])
model = helper.make_model(
graph, opset_imports=[helper.make_operatorsetid('ai.onnx.contrib', 1)], ir_version=7)
return model
def _create_test_model():
nodes = []
nodes[0:] = [helper.make_node('Identity', ['input_1'], ['identity1'])]
nodes[1:] = [helper.make_node('PyReverseMatrix',
['identity1'], ['reversed'],
domain='ai.onnx.contrib')]
input0 = helper.make_tensor_value_info(
'input_1', onnx_proto.TensorProto.FLOAT, [None, 2])
output0 = helper.make_tensor_value_info(
'reversed', onnx_proto.TensorProto.FLOAT, [None, 2])
graph = helper.make_graph(nodes, 'test0', [input0], [output0])
model = make_onnx_model(graph)
return model
def _create_test_model_double(prefix, domain='ai.onnx.contrib'):
nodes = []
nodes[0:] = [helper.make_node('Identity', ['input_1'], ['identity1'])]
nodes[1:] = [helper.make_node('%sAddEpsilon' % prefix,
['identity1'], ['customout'],
domain=domain)]
input0 = helper.make_tensor_value_info(
'input_1', onnx_proto.TensorProto.DOUBLE, [None, None])
output0 = helper.make_tensor_value_info(
'customout', onnx_proto.TensorProto.DOUBLE, [None, None])
graph = helper.make_graph(nodes, 'test0', [input0], [output0])
model = make_onnx_model(graph)
return model
def _create_test_model_2outputs(prefix, domain='ai.onnx.contrib'):
nodes = [
helper.make_node('Identity', ['x'], ['identity1']),
helper.make_node(
'%sNegPos' % prefix, ['identity1'], ['neg', 'pos'],
domain=domain)
]
input0 = helper.make_tensor_value_info(
'x', onnx_proto.TensorProto.FLOAT, [])
output1 = helper.make_tensor_value_info(
'neg', onnx_proto.TensorProto.FLOAT, [])
output2 = helper.make_tensor_value_info(
'pos', onnx_proto.TensorProto.FLOAT, [])
graph = helper.make_graph(nodes, 'test0', [input0], [output1, output2])
model = make_onnx_model(graph)
return model
def _create_test_join():
nodes = []
nodes[0:] = [helper.make_node('Identity', ['input_1'], ['identity1'])]
nodes[1:] = [helper.make_node('PyOpJoin',
['identity1'], ['joined'],
sep=';',
domain='ai.onnx.contrib')]
input0 = helper.make_tensor_value_info(
'input_1', onnx_proto.TensorProto.STRING, [None, None])
output0 = helper.make_tensor_value_info(
'joined', onnx_proto.TensorProto.STRING, [None])
graph = helper.make_graph(nodes, 'test0', [input0], [output0])
model = make_onnx_model(graph)
return model
class TestPythonOp(unittest.TestCase):
@classmethod
def setUpClass(cls):
@onnx_op(op_type="CustomOpOne",
inputs=[PyCustomOpDef.dt_float, PyCustomOpDef.dt_float])
def custom_one_op(x, y):
return np.add(x, y)
@onnx_op(op_type="CustomOpTwo",
outputs=[PyCustomOpDef.dt_int32])
def custom_two_op(f):
return np.round(f).astype(np.int32)
@onnx_op(op_type="PyReverseMatrix")
def reverse_matrix(x):
# The user custom op implementation here.
return np.flip(x, axis=0).astype(np.float32)
@onnx_op(op_type="PyAddEpsilon",
inputs=[PyCustomOpDef.dt_double],
outputs=[PyCustomOpDef.dt_double])
def add_epsilon(x):
# The user custom op implementation here.
return x + 1e-3
@onnx_op(op_type="PyNegPos",
inputs=[PyCustomOpDef.dt_float],
outputs=[PyCustomOpDef.dt_float, PyCustomOpDef.dt_float])
def negpos(x):
neg = x.copy()
pos = x.copy()
neg[x > 0] = 0
pos[x < 0] = 0
return neg, pos
@onnx_op(op_type="PyOpJoin",
inputs=[PyCustomOpDef.dt_string],
outputs=[PyCustomOpDef.dt_string],
attrs=['sep'])
def join(xs, **kwargs):
sep = kwargs.get('sep', '')
res = []
for x in xs:
res.append(sep.join(x))
return np.array(res, dtype=object)
def test_python_operator(self):
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_model = _create_test_model()
self.assertIn('op_type: "PyReverseMatrix"', str(onnx_model))
sess = _ort.InferenceSession(onnx_model.SerializeToString(), so)
input_1 = np.array(
[1, 2, 3, 4, 5, 6]).astype(np.float32).reshape([3, 2])
txout = sess.run(None, {'input_1': input_1})
assert_almost_equal(txout[0], np.array([[5., 6.], [3., 4.], [1., 2.]]))
def test_add_epsilon_python(self):
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_model = _create_test_model_double('Py')
self.assertIn('op_type: "PyAddEpsilon"', str(onnx_model))
sess = _ort.InferenceSession(onnx_model.SerializeToString(), so)
input_1 = np.array([[0., 1., 1.5], [7., 8., -5.5]])
txout = sess.run(None, {'input_1': input_1})
diff = txout[0] - input_1 - 1e-3
assert_almost_equal(diff, np.zeros(diff.shape))
def test_python_negpos(self):
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_model = _create_test_model_2outputs('Py')
self.assertIn('op_type: "PyNegPos"', str(onnx_model))
sess = _ort.InferenceSession(onnx_model.SerializeToString(), so)
x = np.array([[0., 1., 1.5], [7., 8., -5.5]]).astype(np.float32)
neg, pos = sess.run(None, {'x': x})
diff = x - (neg + pos)
assert_almost_equal(diff, np.zeros(diff.shape))
def test_cc_negpos(self):
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_model = _create_test_model_2outputs("")
self.assertIn('op_type: "NegPos"', str(onnx_model))
sess = _ort.InferenceSession(onnx_model.SerializeToString(), so)
x = np.array([[0., 1., 1.5], [7., 8., -5.5]]).astype(np.float32)
neg, pos = sess.run(None, {'x': x})
diff = x - (neg + pos)
assert_almost_equal(diff, np.zeros(diff.shape))
def test_check_saved_model(self):
this = os.path.dirname(__file__)
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_content = _create_test_model_test()
onnx_bytes = onnx_content.SerializeToString()
with open(os.path.join(this, 'data', 'custom_op_test.onnx'),
'rb') as f:
saved = f.read()
self.assertEqual(onnx_content, onnx.load(os.path.join(this, 'data', 'custom_op_test.onnx')))
def test_cc_operator(self):
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_content = _create_test_model_test()
self.assertIn('op_type: "CustomOpOne"', str(onnx_content))
ser = onnx_content.SerializeToString()
sess0 = _ort.InferenceSession(ser, so)
res = sess0.run(None, {
'input_1': np.random.rand(3, 5).astype(np.float32),
'input_2': np.random.rand(3, 5).astype(np.float32)})
self.assertEqual(res[0].shape, (3, 5))
def test_python_join(self):
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
onnx_model = _create_test_join()
self.assertIn('op_type: "PyOpJoin"', str(onnx_model))
sess = _ort.InferenceSession(onnx_model.SerializeToString(), so)
arr = np.array([["a", "b"]], dtype=object)
txout = sess.run(None, {'input_1': arr})
exp = np.array(["a;b"], dtype=object)
assert txout[0][0] == exp[0]
if __name__ == "__main__":
unittest.main()