-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathmf-predict.cpp
207 lines (189 loc) · 5.26 KB
/
mf-predict.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include <cstring>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
#include <iomanip>
#include <stdexcept>
#include <vector>
#include "mf.h"
using namespace std;
using namespace mf;
struct Option
{
Option() : eval(RMSE) {}
string test_path, model_path, output_path;
mf_int eval;
};
string predict_help()
{
return string(
"usage: mf-predict [options] test_file model_file [output_file]\n"
"\n"
"options:\n"
"-e <eval>: specify the evaluation criterion (default 0)\n"
"\t 0 -- root mean square error\n"
"\t 1 -- mean absolute error\n"
"\t 2 -- generalized KL-divergence\n"
"\t 5 -- logarithmic error\n"
"\t 6 -- accuracy\n"
"\t10 -- row-wise mean percentile rank\n"
"\t11 -- column-wise mean percentile rank\n"
"\t12 -- row-wise area under the curve\n"
"\t13 -- column-wise area under the curve\n");
}
Option parse_option(int argc, char **argv)
{
vector<string> args;
for(int i = 0; i < argc; i++)
args.push_back(string(argv[i]));
if(argc == 1)
throw invalid_argument(predict_help());
Option option;
mf_int i;
for(i = 1; i < argc; i++)
{
if(args[i].compare("-e") == 0)
{
if((i+1) >= argc)
throw invalid_argument("need to specify evaluation criterion after -e");
i++;
option.eval = atoi(argv[i]);
if(option.eval != RMSE &&
option.eval != MAE &&
option.eval != GKL &&
option.eval != LOGLOSS &&
option.eval != ACC &&
option.eval != ROW_AUC &&
option.eval != COL_AUC &&
option.eval != ROW_MPR &&
option.eval != COL_MPR)
throw invalid_argument("unknown evaluation criterion");
}
else
break;
}
if(i >= argc-1)
throw invalid_argument("testing data and model file not specified");
option.test_path = string(args[i++]);
option.model_path = string(args[i++]);
if(i < argc)
{
option.output_path = string(args[i]);
}
else if(i == argc)
{
const char *ptr = strrchr(&*option.test_path.begin(), '/');
if(!ptr)
ptr = option.test_path.c_str();
else
++ptr;
option.output_path = string(ptr) + ".out";
}
else
{
throw invalid_argument("invalid argument");
}
return option;
}
void predict(string test_path, string model_path, string output_path, mf_int eval)
{
mf_problem prob = read_problem(test_path);
ofstream f_out(output_path);
if(!f_out.is_open())
throw runtime_error("cannot open " + output_path);
mf_model *model = mf_load_model(model_path.c_str());
if(model == nullptr)
throw runtime_error("cannot load model from " + model_path);
for(mf_int i = 0; i < prob.nnz; i++)
{
mf_float r = mf_predict(model, prob.R[i].u, prob.R[i].v);
f_out << r << endl;
}
switch(eval)
{
case RMSE:
{
auto rmse = calc_rmse(&prob, model);
cout << fixed << setprecision(4) << "RMSE = " << rmse << endl;
break;
}
case MAE:
{
auto mae = calc_mae(&prob, model);
cout << fixed << setprecision(4) << "MAE = " << mae << endl;
break;
}
case GKL:
{
auto gkl = calc_gkl(&prob, model);
cout << fixed << setprecision(4) << "GKL = " << gkl << endl;
break;
}
case LOGLOSS:
{
auto logloss = calc_logloss(&prob, model);
cout << fixed << setprecision(4) << "LOGLOSS = " << logloss << endl;
break;
}
case ACC:
{
auto acc = calc_accuracy(&prob, model);
cout << fixed << setprecision(4) << "ACCURACY = " << acc << endl;
break;
}
case ROW_AUC:
{
auto row_wise_auc = calc_auc(&prob, model, false);
cout << fixed << setprecision(4) << "Row-wise AUC = " << row_wise_auc << endl;
break;
}
case COL_AUC:
{
auto col_wise_auc = calc_auc(&prob, model, true);
cout << fixed << setprecision(4) << "Colmn-wise AUC = " << col_wise_auc << endl;
break;
}
case ROW_MPR:
{
auto row_wise_mpr = calc_mpr(&prob, model, false);
cout << fixed << setprecision(4) << "Row-wise MPR = " << row_wise_mpr << endl;
break;
}
case COL_MPR:
{
auto col_wise_mpr = calc_mpr(&prob, model, true);
cout << fixed << setprecision(4) << "Column-wise MPR = " << col_wise_mpr << endl;
break;
}
default:
{
throw invalid_argument("unknown evaluation criterion");
break;
}
}
mf_destroy_model(&model);
}
int main(int argc, char **argv)
{
Option option;
try
{
option = parse_option(argc, argv);
}
catch(invalid_argument &e)
{
cout << e.what() << endl;
return 1;
}
try
{
predict(option.test_path, option.model_path, option.output_path, option.eval);
}
catch(runtime_error &e)
{
cout << e.what() << endl;
return 1;
}
return 0;
}