-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
240 lines (175 loc) · 8.17 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
# shiny packages
library(shiny)
library(shinydashboard)
# for summary statistics
library(DT)
library("psych")
library(dplyr)
library(formattable)
# prediction models
library(rpart)
library(randomForest)
library(e1071)
library(xgboost)
# plotting
library(ggfortify)
library(plotly)
library(pROC)
library(rpart.plot)
library(caret)
# fit stats
library(stargazer)
# Define server logic required to draw a histogram
shinyServer(function(input, output) {
#This function is repsonsible for loading in the selected file
filedata <- reactive({
infile <- input$datafile
if (is.null(infile)) {
# User has not uploaded a file yet
return(NULL)
}
read.csv(infile$datapath)
})
# This allows user to select variables in the filedata
output$Variables <- renderUI({
selectInput('vars', 'Select the variables to view the summary statistics', names(filedata()) , multiple = TRUE)
})
redfile <- reactive({
select(filedata(), input$vars)
})
#This previews the CSV data file
output$filetable <- renderDataTable({
validate(
need(redfile(),
"Please insert a .csv file")
)
redfile()
})
output$sum <- renderDataTable({
validate(
need(redfile(), "Sorry, there is no data for your requested summary table.
Please insert the data."
)
)
datatable(describe(redfile())) %>%
formatRound(., columns = c(colnames(describe(redfile()))), digits = 2)
})
# R session info
output$info <- renderPrint({
sessionInfo()
})
output$varnames <- renderPrint({
names(filedata())
})
# correlation
correl <- reactive({
round(cor(cbind(redfile()), use = "complete"),3)
})
makecorPlot <- function(){
pairs.panels(redfile())
}
output$corPlot <- renderPlot({
print(makecorPlot())
})
# Predictive Modeling
output$outcomevariable <- renderUI({
selectInput('outvar', 'Select the Outcome Variable (only one)', names(filedata()) , multiple = FALSE)
})
output$independentvariable <- renderUI({
selectInput('indvar', 'Select independent variables (may be more than one)', names(filedata()) , multiple = TRUE)
})
output$Variablespm <- renderUI({
selectInput('vars2', 'Variables', names(filedata()) , multiple = TRUE)
})
est <- reactive({
# set input data
dat <- filedata()
# initialize list
fit_stats <- list()
fit_glm <- glm(formula = as.formula(paste0(input$outvar, " ~ ", paste0(c(input$indvar), collapse = " + "))), data=dat, family =binomial("logit"))
dat$pred_glm <- fit_glm$fitted.values
fit_stats$fit_glm <- fit_glm
fit_dt <- rpart(as.formula(paste0(input$outvar, " ~ ", paste0(c(input$indvar), collapse = " + "))), data=dat)
dat$pred_dt <- predict(fit_dt, dat)
fit_stats$fit_dt <- fit_dt
fit_rf <- randomForest(as.formula(paste0("as.factor(",input$outvar,")", " ~ ", paste0(c(input$indvar), collapse = " + "))), data=dat, ntree = input$ntree, mtry = input$mtry)
dat$pred_rf <- predict(fit_rf, dat, type = "prob")[,2]# later will need to revise this section
fit_stats$fit_rf <- fit_rf
fit_svm <- svm(as.formula(paste0(input$outvar, " ~ ", paste0(c(input$indvar), collapse = " + "))), data=dat, kernel = input$svmkernel, gamma = input$gamma)
dat$pred_svm <- predict(fit_svm, dat)
fit_stats$fit_svm <- fit_svm
list(dat = dat, fit_stats = fit_stats)
})
output$preddat <- renderDataTable({
dat <- est()$dat
sel_dat <- dat[,grepl("^pred_|^pat", colnames(dat))]
datatable(sel_dat) %>%
formatRound(., columns = c(colnames(sel_dat)), digits = 2)
})
# glm outputs
## glm fit summary
output$glm_sum <- renderUI(HTML(stargazer(est()$fit_stats$fit_glm, dep.var.labels = input$outvar, type="html")))
## glm cm plot
output$glmcmplot <- renderPlot({
fourfoldplot(confusionMatrix(if_else(est()$dat$pred_glm >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$table)
})
### Plotting
#### Decision Tree plots
output$dtplot <- renderPlot({
rpart.plot(est()$fit_stats$fit_dt)
})
output$dtcmplot <- renderPlot({
fourfoldplot(confusionMatrix(if_else(est()$dat$pred_dt >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$table)
})
#### Random Forest summary
output$rfsum <- renderPrint({
print(est()$fit_stats$fit_rf)
})
output$rfcmplot <- renderPlot({
fourfoldplot(confusionMatrix(if_else(est()$dat$pred_rf >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$table)
})
#### SVM summary
output$svmsum <- renderPrint({
print(est()$fit_stats$fit_svm)
})
output$svmcmplot <- renderPlot({
fourfoldplot(confusionMatrix(if_else(est()$dat$pred_svm >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$table)
})
#### ROC plots
makeROCplot <- reactive({
dat <- est()$dat
glmROC <- roc(response = dat[,input$outvar], predictor = dat$pred_glm)
rfROC <- roc(response = dat[,input$outvar], predictor = dat$pred_rf)
dtROC <- roc(response = dat[,input$outvar], predictor = dat$pred_dt)
svmROC <- roc(response = dat[,input$outvar], predictor = dat$pred_svm)
list(glm = glmROC, rf = rfROC, dt = dtROC, svm = svmROC)
})
output$roc <- renderPlotly({
ggplotly(ggroc(list(glm=makeROCplot()$glm, rf=makeROCplot()$rf, dt=makeROCplot()$dt, svm=makeROCplot()$svm)), aes = "linetype", color = "red")
})
#### Prediction Performance Table
#This previews the CSV data file
output$pred_perf <- renderDataTable({
validate(
need(est()$dat,
"Please insert a .csv file")
)
perf_tab <- cbind(
c(confusionMatrix(if_else(est()$dat$pred_glm >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$overall, confusionMatrix(if_else(est()$dat$pred_glm >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$byClass),
c(confusionMatrix(if_else(est()$dat$pred_dt >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$overall, confusionMatrix(if_else(est()$dat$pred_dt >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$byClass),
c(confusionMatrix(if_else(est()$dat$pred_rf >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$overall, confusionMatrix(if_else(est()$dat$pred_rf >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$byClass),
c(confusionMatrix(if_else(est()$dat$pred_svm >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$overall, confusionMatrix(if_else(est()$dat$pred_svm >= input$prob_thresh, as.factor(names(table(est()$dat[,input$outvar])))[1], as.factor(names(table(est()$dat[,input$outvar])))[2]), as.factor(est()$dat[,input$outvar]))$byClass)
)
colnames(perf_tab) <- c("glm","dt","rf","svm")
datatable(perf_tab) %>%
formatRound(., columns = c(colnames(perf_tab)), digits = 2)
})
})