-
Notifications
You must be signed in to change notification settings - Fork 33
/
gcn.py
797 lines (735 loc) · 33.2 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import time
import json
import argparse
import importlib
import os
import sys
import joblib
import numpy as np
import sklearn
from sklearn.metrics import average_precision_score, balanced_accuracy_score, matthews_corrcoef, jaccard_score, \
roc_curve, auc, accuracy_score, precision_recall_fscore_support
from sklearn.model_selection import KFold, StratifiedKFold
import tensorflow as tf
if tf.__version__.split(".")[0]=='2':
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import tensorflow.compat.v1.logging as logging
else:
import tensorflow.logging as logging
from tensorflow.python.framework import graph_util
import kgcn.layers
from kgcn.data_util import load_and_split_data, load_data, split_data
from kgcn.core import CoreModel
from kgcn.make_plots import plot_cost, plot_auc, plot_r2
from kgcn.make_plots import make_cost_acc_plot
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __getstate__(self):
return self.__dict__
def __setstate__(self, dict):
self.__dict__ = dict
class NumPyArangeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.int64):
return int(obj)
if isinstance(obj, np.float64):
return float(obj)
if isinstance(obj, np.int32):
return int(obj)
if isinstance(obj, np.float32):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist() # or map(int, obj)
return json.JSONEncoder.default(self, obj)
def save_prediction(filename, prediction_data):
print(f"[SAVE] {filename}")
if os.path.dirname(filename)!="":
os.makedirs(os.path.dirname(filename), exist_ok=True)
pred = np.array(prediction_data)
with open(filename, "w") as fp:
if len(pred.shape) == 2:
# graph-centric mode
# prediction: graph_num x dist
for dist in pred:
fp.write(",".join(map(str, dist)))
fp.write("\n")
elif len(pred.shape) == 3:
# node-centric mode
# prediction: graph_num x node_num x dist
for node_pred in pred:
for dist in node_pred:
fp.write(",".join(map(str, dist)))
fp.write("\n")
fp.write("\n")
else:
print("[ERROR] unknown prediction format")
def get_default_config():
config = {}
config["model.py"] = "model"
config["dataset"] = "data.jbl"
config["validation_dataset"] = None
# optimization parameters
config["epoch"] = 50
config["batch_size"] = 10
config["patience"] = 0
config["learning_rate"] = 0.3
config["validation_data_rate"] = 0.3
config["shuffle_data"] = False
config["k-fold_num"] = 2
# model parameters
config["with_feature"] = True
config["with_node_embedding"] = False
config["embedding_dim"] = 10
config["normalize_adj_flag"] = False
config["split_adj_flag"] = False
config["order"] = 1
config["param"] = None
# model
config["save_interval"] = 10
config["save_model_path"] = "model"
# result/info
# config["save_result_train"]=None
config["save_result_valid"] = None
config["save_result_test"] = None
config["save_result_cv"] = None
config["save_info_train"] = None
config["save_info_valid"] = None
config["save_info_test"] = None
config["save_info_cv"] = None
config["make_plot"] = False
config["plot_path"] = "./result/"
config["visualize_path"] = "./visualization/"
config["plot_multitask"] = False
config["task"] = "multitask_classification"
config["retrain"] = None
#
config["profile"] = False
config["export_model"] = None
# for visualization options
config["visualize_kg"] = None
config["stratified_kfold"] = False
config["prediction_data"] = None
return config
def load_model_py(model, model_py, is_train=True, feed_embedded_layer=False, batch_size=None):
pair = model_py.split(":")
sys.path.append(os.getcwd())
if len(pair) >= 2:
logging.info(f"[LOAD] {pair[1]} from {pair[0]}")
mod = importlib.import_module(pair[0])
cls = getattr(mod, pair[1])
obj = cls()
if model:
model.build(obj, is_train, feed_embedded_layer, batch_size)
return obj
else:
logging.info(f"[LOAD] {pair[0]}")
mod = importlib.import_module(pair[0])
if model:
model.build(mod, is_train, feed_embedded_layer, batch_size)
return mod
def print_ckpt(sess, ckpt):
print(f"== {ckpt}")
for var_name, _ in tf.contrib.framework.list_variables(ckpt):
var = tf.contrib.framework.load_variable(ckpt, var_name)
print(var_name, var.shape)
print("==")
def print_variables():
print('== neural network')
vars_em = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
for v in vars_em:
print(v.name, v.shape)
print("==")
def compute_metrics(config, info, prediction_data, labels):
pred_score = np.array(prediction_data)
true_label = np.array(labels)
# pred_score: #data x # task x #class
if len(pred_score.shape) == 1:
pred_score = pred_score[:, np.newaxis, np.newaxis]
elif len(pred_score.shape) == 2:
pred_score = np.expand_dims(pred_score, axis=1)
logging.info(f"prediction #data x # task x #class: {pred_score.shape}")
# multilabel=True => pred_score: #data x # task x #class
# multilabel=False => pred_score: #data x # task
multiclass = False
ntask = pred_score.shape[1]
if pred_score.shape[2] == 1: # regression or binary
pred_score = pred_score[:, :, 0]
logging.info(f"2-class sigmoid")
elif pred_score.shape[2] == 2: # binary
pred_score = pred_score[:, :, 1]
logging.info(f"2-class softmax")
elif pred_score.shape[2] > 2:
multiclass = True
logging.info(f"multi-class softmax")
# true_label: #data x # task/#class
if ntask == 1 and len(true_label.shape) == 2 and true_label.shape[1] == 2:
true_label = true_label[:, 1]
if len(true_label.shape) == 1:
true_label = true_label[:, np.newaxis]
logging.info(f"label #data x # task/#class: {true_label.shape}")
if not multiclass:
logging.info(f"binary-class mode")
v = []
for i in range(ntask):
el = {}
if config["task"] == "regression":
el["r2"] = sklearn.metrics.r2_score(true_label[:, i], pred_score[:, i])
el["mse"] = sklearn.metrics.mean_squared_error(true_label[:, i], pred_score[:, i])
elif config["task"] == "regression_gmfe":
el["gmfe"] = np.exp(np.mean(np.log(true_label[:, i]/pred_score[:, i])))
else:
pred = np.zeros(pred_score.shape)
pred[pred_score > 0.5] = 1
fpr, tpr, _ = roc_curve(true_label[:, i], pred_score[:, i], pos_label=1)
roc_auc = auc(fpr, tpr)
ap = average_precision_score(true_label[:, i], pred_score[:, i], pos_label=1)
acc = accuracy_score(true_label[:, i], pred[:, i])
scores = precision_recall_fscore_support(true_label[:, i], pred[:, i], average='binary')
el["auc"] = roc_auc
el["acc"] = acc
el["ap"] = ap
el["pre"] = scores[0]
el["rec"] = scores[1]
el["f"] = scores[2]
el["sup"] = scores[3]
el["balanced_acc"] = balanced_accuracy_score(true_label[:, i], pred[:, i])
el["mcc"] = matthews_corrcoef(true_label[:, i], pred[:, i])
try:
el["jaccard"] = jaccard_score(true_label[:, i], pred[:, i])
except:
pass
v.append(el)
else: # multiclass=True
# #data x # task x #class
# limitation: #task=1
logging.info(f"multi-class mode")
pred = np.argmax(pred_score, axis=-1)
true_label = np.argmax(true_label, axis=-1)
pred = pred[:, 0]
nclass = pred_score.shape[2]
v = []
for i in range(ntask):
el = {}
acc = accuracy_score(true_label, pred)
scores = precision_recall_fscore_support(true_label, pred, labels=list(range(nclass)), average=None)
el["acc"] = acc
el["pre"] = scores[0]
el["rec"] = scores[1]
el["f"] = scores[2]
el["sup"] = scores[3]
el["balanced_acc"] = balanced_accuracy_score(true_label, pred)
el["mcc"] = matthews_corrcoef(true_label, pred)
try:
el["jaccard"] = jaccard_score(true_label, pred)
except:
pass
v.append(el)
return v
def train(sess, graph, config):
if config["validation_dataset"] is None:
_, train_data, valid_data, info = load_and_split_data(config, filename=config["dataset"],
valid_data_rate=config["validation_data_rate"])
else:
print("[INFO] training")
train_data, info = load_data(config, filename=config["dataset"])
print("[INFO] validation")
valid_data, valid_info = load_data(config, filename=config["validation_dataset"])
info["graph_node_num"] = max(info["graph_node_num"], valid_info["graph_node_num"])
info["graph_num"] = info["graph_num"] + valid_info["graph_num"]
model = CoreModel(sess, config, info)
load_model_py(model, config["model.py"])
metric_name = ("mse" if config["task"] == "regression" else
"gmfe" if config["task"] == "regression_gmfe" else
"accuracy")
if config["profile"]:
vars_to_train = tf.trainable_variables()
print(vars_to_train)
# Training
start_t = time.time()
model.fit(train_data, valid_data)
train_time = time.time() - start_t
print(f"training time: {train_time}[sec]")
if valid_data.num > 0:
# Validation
start_t = time.time()
valid_cost, valid_metrics, prediction_data = model.pred_and_eval(valid_data)
infer_time = time.time() - start_t
print(f"final cost = {valid_cost}\n"
f"{metric_name} = {valid_metrics[metric_name]}\n"
f"validation time: {infer_time}[sec]\n")
# Saving
if config["save_info_valid"] is not None:
result = {}
result["validation_cost"] = valid_cost
result["validation_accuracy"] = valid_metrics
result["train_time"] = train_time
result["infer_time"] = infer_time
if config["task"]!="link_prediction":
result["valid_metrics"] = compute_metrics(config, info, prediction_data, valid_data.labels)
##
save_path = config["save_info_valid"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
with open(save_path, "w") as fp:
json.dump(result, fp, indent=4, cls=NumPyArangeEncoder)
##
if config["save_info_train"] is not None:
fold_data = dotdict({})
fold_data.valid_acc = valid_metrics[metric_name]
if config["task"] == "regression":
fold_data.training_mse = [el["training_mse"] for el in model.training_metrics_list]
fold_data.validation_mse = [el["validation_mse"] for el in model.validation_metrics_list]
elif config["task"] == "regression_gmfe":
fold_data.training_mse = [el["training_gmfe"] for el in model.training_metrics_list]
fold_data.validation_mse = [el["validation_gmfe"] for el in model.validation_metrics_list]
else:
fold_data.training_acc = [el["training_accuracy"] for el in model.training_metrics_list]
fold_data.validation_acc = [el["validation_accuracy"] for el in model.validation_metrics_list]
fold_data.training_cost = model.training_cost_list
fold_data.validation_cost = model.validation_cost_list
fold_data.train_time = train_time
fold_data.infer_time = infer_time
save_path = config["save_info_train"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
with open(save_path, "w") as fp:
json.dump(fold_data, fp, indent=4, cls=NumPyArangeEncoder)
##
if config["export_model"]:
try:
print(f"[SAVE] {config['export_model']}")
graph_def = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), ['output'])
tf.train.write_graph(graph_def, '.', config["export_model"], as_text=False)
except:
print('[ERROR] output has been not found')
if config["save_result_valid"] is not None:
filename = config["save_result_valid"]
save_prediction(filename, prediction_data)
if config["make_plot"]:
if config["task"] == "regression" or config["task"] == "regression_gmfe":
# plot_cost(config, valid_data, model)
plot_r2(config, valid_data.labels, np.array(prediction_data))
elif config["task"]=="link_prediction":
plot_cost(config, valid_data, model)
else:
plot_cost(config, valid_data, model)
plot_auc(config, valid_data.labels, np.array(prediction_data))
def train_cv(sess, graph, config):
all_data, info = load_data(config, filename=config["dataset"], prohibit_shuffle=True) # shuffle is done by KFold
model = CoreModel(sess, config, info)
load_model_py(model, config["model.py"])
# Training
if config["stratified_kfold"]:
print("[INFO] use stratified K-fold")
kf = StratifiedKFold(n_splits=config["k-fold_num"], shuffle=config["shuffle_data"], random_state=123)
else:
kf = KFold(n_splits=config["k-fold_num"], shuffle=config["shuffle_data"], random_state=123)
kf_count = 1
fold_data_list = []
output_data_list = []
if all_data["labels"] is not None:
split_base = all_data["labels"]
else:
split_base = all_data["label_list"][0]
if config["stratified_kfold"]:
split_base = np.argmax(split_base, axis=1)
score_metrics = []
if config["task"] == "regression":
metric_name = "mse"
elif config["task"] == "regression_gmfe":
metric_name = "gmfe"
else:
metric_name = "accuracy"
split_data_generator = kf.split(split_base, split_base) if config["stratified_kfold"] else kf.split(split_base)
for train_valid_list, test_list in split_data_generator:
print(f"starting fold: {kf_count}")
train_valid_data, test_data = split_data(all_data,
indices_for_train_data=train_valid_list,
indices_for_valid_data=test_list)
train_data, valid_data = split_data(train_valid_data, valid_data_rate=config["validation_data_rate"])
# Training
print(train_valid_list)
print(test_list)
start_t = time.time()
model.fit(train_data, valid_data, k_fold_num=kf_count)
train_time = time.time() - start_t
print(f"training time: {train_time}[sec]")
# Test
print("== valid data ==")
start_t = time.time()
valid_cost, valid_metrics, prediction_data = model.pred_and_eval(valid_data)
infer_time = time.time() - start_t
print(f"final cost = {valid_cost}\n"
f"{metric_name} = {valid_metrics[metric_name]}\n"
f"infer time: {infer_time}[sec]\n")
print("== test data ==")
start_t = time.time()
test_cost, test_metrics, prediction_data = model.pred_and_eval(test_data)
infer_time = time.time() - start_t
print(f"final cost = {test_cost}\n"
f"{metric_name} = {test_metrics[metric_name]}\n")
score_metrics.append(test_metrics[metric_name])
print(f"infer time: {infer_time}[sec]")
if config["export_model"]:
try:
name, ext = os.path.splitext(config["export_model"])
filename = name+"."+str(kf_count)+ext
print(f"[SAVE] {filename}")
graph_def = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), ['output'])
tf.train.write_graph(graph_def, '.', filename, as_text=False)
except:
print('[ERROR] output has been not found')
if "save_edge_result_cv" in config:
output_data = model.output(test_data)
output_data_list.append(output_data)
# save fold data
fold_data = dotdict({})
fold_data.prediction_data = prediction_data
if all_data["labels"] is not None:
fold_data.test_labels = test_data.labels
else:
fold_data.test_labels = test_data.label_list
fold_data.test_data_idx = test_list
if config["task"] == "regression":
fold_data.training_mse = [el["training_mse"] for el in model.training_metrics_list]
fold_data.validation_mse = [el["validation_mse"] for el in model.validation_metrics_list]
elif config["task"] == "regression_gmfe":
fold_data.training_mse = [el["training_gmfe"] for el in model.training_metrics_list]
fold_data.validation_mse = [el["validation_gmfe"] for el in model.validation_metrics_list]
else:
fold_data.training_acc = [el["training_accuracy"] for el in model.training_metrics_list]
fold_data.validation_acc = [el["validation_accuracy"] for el in model.validation_metrics_list]
fold_data.test_acc = test_metrics[metric_name]
fold_data.training_cost = model.training_cost_list
fold_data.validation_cost = model.validation_cost_list
fold_data.test_cost = test_cost
fold_data.train_time = train_time
fold_data.infer_time = infer_time
fold_data_list.append(fold_data)
kf_count += 1
print(f"cv {metric_name}(mean) = {np.mean(score_metrics)}\n"
f"cv {metric_name}(std.) = {np.std(score_metrics)}\n")
if "save_info_cv" in config and config["save_info_cv"] is not None:
save_path = config["save_info_cv"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
_, ext = os.path.splitext(save_path)
if ext == ".json":
with open(save_path, "w") as fp:
json.dump(fold_data_list, fp, indent=4, cls=NumPyArangeEncoder)
else:
joblib.dump(fold_data_list, save_path, compress=True)
#
if "save_edge_result_cv" in config and config["save_edge_result_cv"] is not None:
result_cv = []
for j, fold_data in enumerate(fold_data_list):
pred_score = np.array(fold_data.prediction_data)
true_label = np.array(fold_data.test_labels)
test_idx = fold_data.test_data_idx
score_list = []
for pair in true_label[0]:
i1, _, j1, i2, _, j2 = pair
s1 = pred_score[0, i1, j1]
s2 = pred_score[0, i2, j2]
score_list.append([s1, s2])
fold = {}
fold["output"] = output_data_list[j][0]
fold["score"] = np.array(score_list)
fold["test_data_idx"] = test_idx
result_cv.append(fold)
save_path = config["save_edge_result_cv"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
_, ext = os.path.splitext(save_path)
if ext == ".json":
with open(save_path, "w") as fp:
json.dump(result_cv, fp, indent=4, cls=NumPyArangeEncoder)
else:
joblib.dump(result_cv, save_path, compress=True)
#
if "save_result_cv" in config and config["save_result_cv"] is not None:
result_cv = []
for j, fold_data in enumerate(fold_data_list):
v = compute_metrics(config, info, fold_data.prediction_data, fold_data.test_labels)
result_cv.append(v)
save_path = config["save_result_cv"]
print(f"[SAVE] {save_path}")
with open(save_path, "w") as fp:
json.dump(result_cv, fp, indent=4, cls=NumPyArangeEncoder)
#
for i, fold_data in enumerate(fold_data_list):
prefix = "fold"+str(i)+"_"
result_path = config["plot_path"]
os.makedirs(result_path, exist_ok=True)
if config["make_plot"]:
if config["task"] == "regression":
make_cost_acc_plot(fold_data.training_cost, fold_data.validation_cost,
fold_data.training_mse, fold_data.validation_mse, result_path,prefix=prefix)
pred_score = np.array(fold_data.prediction_data)
plot_r2(config, fold_data.test_labels, pred_score, prefix=prefix)
elif config["task"] == "regression_gmfe":
make_cost_acc_plot(fold_data.training_cost, fold_data.validation_cost,
fold_data.training_mse, fold_data.validation_mse, result_path,prefix=prefix)
pred_score = np.array(fold_data.prediction_data)
plot_r2(config, fold_data.test_labels, pred_score, prefix=prefix)
elif config["task"] == "link_prediction":
make_cost_acc_plot(fold_data.training_cost, fold_data.validation_cost,
fold_data.training_acc, fold_data.validation_acc, result_path,prefix=prefix)
else:
make_cost_acc_plot(fold_data.training_cost, fold_data.validation_cost,
fold_data.training_acc, fold_data.validation_acc, result_path,prefix=prefix)
pred_score = np.array(fold_data.prediction_data)
plot_auc(config, fold_data.test_labels, pred_score, prefix=prefix)
def infer(sess, graph, config):
dataset_filename = config["dataset"]
if "dataset_test" in config:
dataset_filename = config["dataset_test"]
if "test_label_list" in config:
config["label_list"]=config["test_label_list"]
all_data, info = load_data(config, filename=dataset_filename, prohibit_shuffle=True, test_mode=True)
model = CoreModel(sess, config, info)
load_model_py(model, config["model.py"], is_train=False)
metric_name = ("mse" if config["task"] == "regression" else
"gmfe" if config["task"] == "regression_gmfe" else
"accuracy")
# Initialize session
restore_ckpt(sess, config["load_model"])
# Validation
start_t = time.time()
test_cost, test_metrics, prediction_data = model.pred_and_eval(all_data)
infer_time = time.time() - start_t
print(f"final cost = {test_cost}\n"
f"{metric_name} = {test_metrics[metric_name]}\n"
f"infer time: {infer_time}[sec]\n")
if config["save_info_test"] is not None:
result = {}
result["test_cost"] = test_cost
result["test_accuracy"] = test_metrics
result["infer_time"] = infer_time
if config["task"]!="link_prediction":
result["test_metrics"] = compute_metrics(config, info, prediction_data, all_data.labels)
save_path = config["save_info_test"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
with open(save_path, "w") as fp:
json.dump(result, fp, indent=4, cls=NumPyArangeEncoder)
if config["save_result_test"] is not None:
filename = config["save_result_test"]
save_prediction(filename, prediction_data)
if config["make_plot"]:
if config["task"] == "regression":
pred_score = np.array(prediction_data)
plot_r2(config, all_data.labels, pred_score)
elif config["task"] == "regression_gmfe":
pred_score = np.array(prediction_data)
plot_r2(config, all_data.labels, pred_score)
elif config["task"] == "link_prediction":
pass
else:
plot_auc(config, all_data.labels, np.array(prediction_data))
if "save_edge_result_test" in config and config["save_edge_result_test"] is not None:
#output_left_pred = model.left_pred(all_data)
#print(output_left_pred.shape)
##
output_data = model.output(all_data)
pred_score = np.array(prediction_data)
true_label = np.array(all_data.label_list)
score_list = []
print(true_label.shape)
for pair in true_label[0]:
if len(prediction_data[0].shape)==2:
i1, _, j1, i2, _, j2 = pair
s1 = pred_score[0, i1, j1]
s2 = pred_score[0, i2, j2]
elif len(prediction_data[0].shape)==3:
i1, r1, j1, i2, r2, j2 = pair
s1 = pred_score[0, r1, i1, j1]
s2 = pred_score[0, r2, i2, j2]
score_list.append([s1, s2])
fold = {}
fold["output"] = output_data[0]
fold["score"] = np.array(score_list)
save_path = config["save_edge_result_test"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
_, ext = os.path.splitext(save_path)
if ext == ".json":
with open(save_path, "w") as fp:
json.dump(fold, fp, indent=4, cls=NumPyArangeEncoder)
else:
joblib.dump(fold, save_path, compress=True)
if config["prediction_data"] is not None:
obj = {}
pred_score = np.array(prediction_data)
obj["prediction_data"] = pred_score
# obj["labels"] = all_data.labels
save_path = config["prediction_data"]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"[SAVE] {save_path}")
joblib.dump(obj, config["prediction_data"], compress=True)
def restore_ckpt(sess, ckpt):
saver = tf.train.Saver()
logging.info(f"[LOAD]{ckpt}")
try:
saver.restore(sess, ckpt)
except:
print("======LOAD ERROR======")
print_variables()
print_ckpt(sess, ckpt)
raise Exception
return saver
def visualize(sess, config, args):
from kgcn.visualization import cal_feature_IG, cal_feature_IG_for_kg
# input a molecule at a time
batch_size = 1
dataset_filename = config["dataset"]
if "dataset_test" in config:
dataset_filename = config["dataset_test"]
all_data, info = load_data(config, filename=dataset_filename, prohibit_shuffle=True)
model = CoreModel(sess, config, info)
load_model_py(model, config["model.py"], is_train=False, feed_embedded_layer=True, batch_size=batch_size)
placeholders = model.placeholders
restore_ckpt(sess, config['load_model'])
# calculate integrated gradients
if config['visualize_type'] == 'graph':
cal_feature_IG(sess, all_data, placeholders, info, config, model.prediction,
args.ig_modal_target, args.ig_label_target,
logger=logging, model=model.nn, args=args)
else:
cal_feature_IG_for_kg(sess, all_data, placeholders, info, config, model.prediction,
logger=logging, model=model.nn, args=args)
def main():
seed = 1234
np.random.seed(seed)
parser = argparse.ArgumentParser()
parser.add_argument('mode', type=str,
help='train/infer/train_cv/visualize')
parser.add_argument('--config', type=str, default=None, nargs='?',
help='config json file')
parser.add_argument('--save-config', default=None, nargs='?',
help='save config json file')
parser.add_argument('--retrain', type=str, default=None,
help='retrain from checkpoint')
parser.add_argument('--no-config', action='store_true',
help='use default setting')
parser.add_argument('--model', type=str, default=None,
help='model')
parser.add_argument('--dataset', type=str, default=None,
help='dataset')
parser.add_argument('--gpu', type=str, default=None,
help='constraint gpus (default: all) (e.g. --gpu 0,2)')
parser.add_argument('--cpu', action='store_true',
help='cpu mode (calcuration only with cpu)')
parser.add_argument('--bspmm', action='store_true',
help='bspmm')
parser.add_argument('--bconv', action='store_true',
help='bconv')
parser.add_argument('--batched', action='store_true',
help='batched')
parser.add_argument('--profile', action='store_true',
help='')
parser.add_argument('--skfold', action='store_true',
help='stratified k-fold')
parser.add_argument('--param', type=str, default=None,
help='parameter')
parser.add_argument('--ig_targets', type=str, default='all',
choices=['all', 'profeat', 'features', 'adjs', 'dragon','embedded_layer'],
help='[deplicated (use ig_modal_target)]set scaling targets for Integrated Gradients')
parser.add_argument('--ig_modal_target', type=str, default='all',
choices=['all', 'profeat', 'features', 'adjs', 'dragon','embedded_layer'],
help='set scaling targets for Integrated Gradients')
parser.add_argument('--ig_label_target', type=str, default='max',
help='[visualization mode only] max/all/(label index)')
parser.add_argument('--visualize_type', type=str, default='graph',
choices=['graph', 'node', 'edge_loss', 'edge_score'],
help="graph: visualize graph's property. node: create an integrated gradients map"
" using target node. edge_loss: create an integrated gradients map"
" using target edge and loss function. edge_score: create an integrated gradients map"
" using target edge and score function.")
parser.add_argument('--visualize_target', type=int, default=None,
help="set the target's number you want to visualize. from: [0, ~)")
parser.add_argument('--visualize_resample_num', type=int, default=None,
help="resampling for visualization: [0, ~v)")
parser.add_argument('--visualize_method', type=str, default='ig',
choices=['ig', 'grad', 'grad_prod', 'smooth_grad', 'smooth_ig'],
help="visualization methods")
parser.add_argument('--graph_distance', type=int, default=1,
help=("set the distance from target node. An output graph is created within "
"the distance from target node. :[1, ~)"))
parser.add_argument('--verbose', action="store_true",
help="set log level")
parser.add_argument('--visualization_header', type=str, default=None,
help="filename header of visualization")
args = parser.parse_args()
if args.verbose:
logging.set_verbosity(logging.DEBUG)
else:
logging.set_verbosity(logging.WARN)
# config
config = get_default_config()
if args.config is None:
pass
else:
print(f"[LOAD] {args.config}")
with open(args.config, "r") as fp:
config.update(json.load(fp))
# option
if args.model is not None:
config["load_model"] = args.model
if args.dataset is not None:
config["dataset"] = args.dataset
# param
if args.param is not None:
config["param"] = args.param
# option
if args.retrain is not None:
config["retrain"] = args.retrain
# gpu/cpu
if args.cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ""
elif args.gpu is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
#
if args.profile:
config["profile"] = True
if args.skfold is not None:
config["stratified_kfold"] = args.skfold
# bspmm
# if args.disable_bspmm:
# print("[INFO] disabled bspmm")
# else:
kgcn.layers.load_bspmm(args)
# print("[INFO] enabled bspmm")
# depricated options
if args.ig_targets != "all":
args.ig_modal_target = args.ig_targets
# setup
config["visualize_type"] = args.visualize_type
config["visualize_target"] = args.visualize_target
config["graph_distance"] = args.graph_distance
with tf.Graph().as_default() as graph:
seed = 1234
tf.set_random_seed(seed)
with tf.Session(config=tf.ConfigProto(log_device_placement=False,
gpu_options=tf.GPUOptions(allow_growth=True))) as sess:
# mode
config["mode"] = args.mode
if args.mode == "train":
train(sess, graph, config)
if args.mode == "train_cv":
train_cv(sess, graph, config)
elif args.mode == "infer" or args.mode == "predict":
infer(sess, graph, config)
elif args.mode == "visualize":
visualize(sess, config, args)
if args.save_config is not None:
print(f"[SAVE] {args.save_config}")
os.makedirs(os.path.dirname(args.save_config), exist_ok=True)
with open(args.save_config, "w") as fp:
json.dump(config, fp, indent=4, cls=NumPyArangeEncoder)
if __name__ == '__main__':
main()