-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathMLBaseClass.py
286 lines (223 loc) · 12 KB
/
MLBaseClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
import higher
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import typing
import os
import random
import sys
import abc
# --------------------------------------------------
# Default configuration
# --------------------------------------------------
config = {} # initialize a configuration dictionary
# Hardware
config['device'] = torch.device('cuda:0' if torch.cuda.is_available() \
else torch.device('cpu'))
# Dataset
config['datasource'] = 'omniglot-py'
config['suffix'] = 'png' # extension of image file: png, jpg
config['image_size'] = (1, 64, 64)
config['ds_folder'] = './datasets' # path to the folder containing the dataset
config['load_images'] = True # load images on RAM for fast access. Set False for large dataset to avoid out-of-memory
# Meta-learning method
config['ml_algorithm'] = 'maml' # either: maml and vampire
config['first_order'] = True # applicable for MAML-like algorithms
config['num_models'] = 1 # number of models used in Monte Carlo to approximate expectation
config['KL_weight'] = 1e-4
config['dropout_prob'] = 0.2
# Task-related
config['max_way'] = 5
config['min_way'] = 5
config['k_shot'] = 1
config['v_shot'] = 15
# Training related parameters
config['network_architecture'] = 'CNN' # either CNN or ResNet18 specified in the CommonModels.py
config['batchnorm'] = False
config['num_inner_updates'] = 5
config['inner_lr'] = 0.1
config['meta_lr'] = 1e-3
config['minibatch'] = 20 # mini-batch of tasks
config['minibatch_print'] = np.lcm(config['minibatch'], 500)
config['num_episodes_per_epoch'] = 10000 # save model after every xx tasks
config['num_epochs'] = 1
config['resume_epoch'] = 0
# config['train_flag'] = True
# Testing
config['num_episodes'] = 100
config['episode_file'] = None # path to a csv file with row as episode name and column as list of classes that form an episode
# Log
config['logdir'] = os.path.join('/media/n10/Data', 'meta_learning', config['ml_algorithm'], config['datasource'], config['network_architecture'])
# --------------------------------------------------
# Meta-learning class
# --------------------------------------------------
class MLBaseClass(object):
"""Meta-learning class for MAML and VAMPIRE
"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def __init__(self, config: dict = config) -> None:
"""Initialize an instance of a meta-learning algorithm
"""
self.config = config
return
@abc.abstractmethod
def load_model(self, resume_epoch: int, eps_dataloader: torch.utils.data.DataLoader, **kwargs) -> dict:
"""Load the model for meta-learning algorithm
"""
raise NotImplementedError()
@abc.abstractmethod
def adaptation(self, x: torch.Tensor, y: torch.Tensor, model: dict) -> typing.Union[higher.patch._MonkeyPatchBase, torch.Tensor]:
"""Task adaptation step that produces a task-specific model
Args:
x: training data of a task
y: training labels of that task
model: a dictionary consisting of
- "hyper_net", "f_base_net", "optimizer" for MAML-like algorithms such as MAML, ABML, VAMPIRE
- "protonet", "optimizer" for Prototypical Networks
Returns: a task-specific model
"""
raise NotImplementedError()
@abc.abstractmethod
def prediction(self, x: torch.Tensor, adapted_hyper_net: typing.Union[torch.Tensor, higher.patch._MonkeyPatchBase], model: dict) -> typing.Union[torch.Tensor, typing.List[torch.Tensor]]:
"""Calculate logits of data
Args:
x: data of a task
adapted_hyper_net: either the prototypes of classes or the adapted hypernet
model: dictionary consisting of the model and its optimizer
Returns: prediction logits of data x
"""
raise NotImplementedError()
@abc.abstractmethod
def validation_loss(self, x: torch.Tensor, y: torch.Tensor, adapted_hyper_net: typing.Union[torch.Tensor, higher.patch._MonkeyPatchBase], model: dict) -> torch.Tensor:
"""Calculate the validation loss to update the meta-paramter
Args:
x: data in the validation subset
y: corresponding labels in the validation subset
adapted_hyper_net: either the prototypes of classes or the adapted hypernet
model: dictionary consisting of the model and its optimizer
Return: loss on the validation subset (might also include some regularization such as KL divergence)
"""
raise NotImplementedError()
@abc.abstractmethod
def evaluation(self, x_t: torch.Tensor, y_t: torch.Tensor, x_v: torch.Tensor, y_v: torch.Tensor, model: dict) -> typing.Tuple[float, float]:
"""Calculate loss and accuracy of the given task
Args:
x_t, y_t, x_v, y_v: the data of task
model:
Returns: two scalars: loss and accuracy
"""
raise NotImplementedError()
def train(self, train_dataloader: torch.utils.data.DataLoader, val_dataloader: typing.Optional[torch.utils.data.DataLoader]) -> None:
"""Train meta-learning model
Args:
eps_dataloader: the generator that generate episodes/tasks
"""
print('Training is started.\nLog is stored at {0:s}.\n'.format(self.config['logdir']))
# initialize/load model. Please see the load_model method implemented in each specific class for further information about the model
model = self.load_model(resume_epoch=self.config['resume_epoch'], hyper_net_class=self.hyper_net_class, eps_dataloader=train_dataloader)
model["optimizer"].zero_grad()
# initialize a tensorboard summary writer for logging
tb_writer = SummaryWriter(
log_dir=self.config['logdir'],
purge_step=self.config['resume_epoch'] * self.config['num_episodes_per_epoch'] // self.config['minibatch_print'] if self.config['resume_epoch'] > 0 else None
)
try:
for epoch_id in range(self.config['resume_epoch'], self.config['resume_epoch'] + self.config['num_epochs'], 1):
loss_monitor = 0.
for eps_count, eps_data in enumerate(train_dataloader):
if (eps_count >= self.config['num_episodes_per_epoch']):
break
# split data into train and validation
split_data = self.config['train_val_split_function'](eps_data=eps_data, k_shot=self.config['k_shot'])
# move data to GPU (if there is a GPU)
x_t = split_data['x_t'].to(self.config['device'])
y_t = split_data['y_t'].to(self.config['device'])
x_v = split_data['x_v'].to(self.config['device'])
y_v = split_data['y_v'].to(self.config['device'])
# -------------------------
# adaptation on training subset
# -------------------------
adapted_hyper_net = self.adaptation(x=x_t, y=y_t, model=model)
# -------------------------
# loss on validation subset
# -------------------------
loss_v = self.validation_loss(x=x_v, y=y_v, adapted_hyper_net=adapted_hyper_net, model=model)
loss_v = loss_v / self.config["minibatch"]
if torch.isnan(input=loss_v):
raise ValueError("Loss is NaN.")
# calculate gradients w.r.t. hyper_net's parameters
loss_v.backward()
loss_monitor += loss_v.item()
# update meta-parameters
if ((eps_count + 1) % self.config['minibatch'] == 0):
model["optimizer"].step()
model["optimizer"].zero_grad()
# monitoring
if (eps_count + 1) % self.config['minibatch_print'] == 0:
loss_monitor = loss_monitor * self.config["minibatch"] / self.config["minibatch_print"]
# calculate step for Tensorboard Summary Writer
global_step = (epoch_id * self.config['num_episodes_per_epoch'] + eps_count + 1) // self.config['minibatch_print']
tb_writer.add_scalar(tag="Train_Loss", scalar_value=loss_monitor, global_step=global_step)
# reset monitoring variables
loss_monitor = 0.
# -------------------------
# Validation
# -------------------------
if val_dataloader is not None:
# turn on EVAL mode to disable dropout
model["f_base_net"].eval()
loss_temp, accuracy_temp = self.evaluate(
num_eps=self.config['num_episodes'],
eps_dataloader=val_dataloader,
model=model
)
tb_writer.add_scalar(tag="Val_NLL", scalar_value=np.mean(loss_temp), global_step=global_step)
tb_writer.add_scalar(tag="Val_Accuracy", scalar_value=np.mean(accuracy_temp), global_step=global_step)
model["f_base_net"].train()
del loss_temp
del accuracy_temp
# save model
checkpoint = {
"hyper_net_state_dict": model["hyper_net"].state_dict(),
"opt_state_dict": model["optimizer"].state_dict()
}
checkpoint_path = os.path.join(self.config['logdir'], 'Epoch_{0:d}.pt'.format(epoch_id + 1))
torch.save(obj=checkpoint, f=checkpoint_path)
print('State dictionaries are saved into {0:s}\n'.format(checkpoint_path))
print('Training is completed.')
finally:
print('\nClose tensorboard summary writer')
tb_writer.close()
return None
def evaluate(self, num_eps: int, eps_dataloader: torch.utils.data.DataLoader, model: dict) -> typing.Tuple[typing.List[float], typing.List[float]]:
"""Calculate loss and accuracy of tasks contained in the list 'eps'
Args:
num_eps: number of episodes to test
eps_dataloader: receive an eps_name and output the data of that task
model: a dictionary
Returns: two lists: loss and accuracy
"""
loss = [None] * num_eps
accuracy = [None] * num_eps
for eps_id, eps_data in enumerate(eps_dataloader):
if eps_id >= num_eps:
break
# split data into train and validation
split_data = self.config['train_val_split_function'](eps_data=eps_data, k_shot=self.config['k_shot'])
# move data to GPU (if there is a GPU)
x_t = split_data['x_t'].to(self.config['device'])
y_t = split_data['y_t'].to(self.config['device'])
x_v = split_data['x_v'].to(self.config['device'])
y_v = split_data['y_v'].to(self.config['device'])
loss[eps_id], accuracy[eps_id] = self.evaluation(x_t=x_t, y_t=y_t, x_v=x_v, y_v=y_v, model=model)
return loss, accuracy
def test(self, num_eps: int, eps_dataloader: torch.utils.data.DataLoader) -> None:
"""Evaluate the performance
"""
print("Evaluation is started.\n")
model = self.load_model(resume_epoch=self.config["resume_epoch"], hyper_net_class=self.hyper_net_class, eps_dataloader=eps_dataloader)
loss, accuracy = self.evaluate(num_eps=num_eps, eps_dataloader=eps_dataloader, model=model)
print('NLL = {0} +/- {1}'.format(np.mean(loss), 1.96 * np.std(loss) / np.sqrt(len(loss))))
print("Accuracy = {0:.2f} +/- {1:.2f}\n".format(np.mean(accuracy), 1.96 * np.std(accuracy) / np.sqrt(len(accuracy))))
return None