-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain.py
218 lines (168 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
# MAML
python3 main.py --datasource SineLine --ml-algorithm MAML --first-order --network-architecture FcNet --no-batchnorm --num-ways 1 --k-shot 5 --inner-lr 0.001 --meta-lr 0.001 --num-epochs 100 --resume-epoch 0 --train
python3 main.py --datasource omniglot --img-size 32 --img-size 32 --ml-algorithm MAML --first-order --network-architecture CNN --no-batchnorm --num-ways 5 --k-shot 1 --v-shot 15 --inner-lr 0.1 --num-inner-updates 5 --meta-lr 1e-3 --num-epochs 20 --resume-epoch 0 --train
python3 main.py --datasource miniImageNet --img-size 84 --img-size 84 --ml-algorithm MAML --first-order --network-architecture ResNet10 --no-batchnorm --num-ways 5 --inner-lr 0.1 --num-inner-updates 5 --meta-lr 1e-3 --num-epochs 1 --resume-epoch 0 --train
# VAMPIRE2
python3 main.py --datasource SineLine --ml-algorithm vampire2 --num-models 4 --first-order --network-architecture FcNet --no-batchnorm --num-ways 1 --k-shot 5 --inner-lr 0.001 --meta-lr 0.001 --num-epochs 100 --resume-epoch 0 --train
python3 main.py --datasource miniImageNet --ml-algorithm vampire2 --num-models 2 --first-order --network-architecture CNN --no-batchnorm --num-ways 5 --no-strided --num-epochs 100 --resume-epoch 0 --train
# ABML
python3 main.py --datasource SineLine --ml-algorithm abml --num-models 4 --first-order --network-architecture FcNet --no-batchnorm --num-ways 1 --k-shot 5 --inner-lr 0.001 --meta-lr 0.001 --num-epochs 100 --resume-epoch 0 --train
python3 main.py --datasource miniImageNet --ml-algorithm abml --num-models 2 --first-order --network-architecture CNN --no-batchnorm --num-ways 5 --no-strided --num-epochs 100 --resume-epoch 0 --train
# PLATIPUS
python3 main.py --datasource SineLine --ml-algorithm platipus --num-models 4 --first-order --network-architecture FcNet --no-batchnorm --num-ways 1 --k-shot 5 --inner-lr 0.001 --meta-lr 0.001 --num-epochs 100 --resume-epoch 0 --train
python3 main.py --datasource miniImageNet --ml-algorithm platipus --num-models 2 --first-order --network-architecture CNN --no-batchnorm --num-ways 5 --no-strided --num-epochs 100 --resume-epoch=0 --train
# BMAML
python3 main.py --datasource SineLine --ml-algorithm bmaml --num-models 4 --first-order --network-architecture FcNet --no-batchnorm --num-ways 1 --k-shot 5 --inner-lr 0.001 --meta-lr 0.001 --num-epochs 100 --resume-epoch 0 --train
python3 main.py --datasource miniImageNet --ml-algorithm bmaml --num-models 2 --first-order --network-architecture CNN --no-batchnorm --no-strided --num-ways 5 --num-epochs 100 --resume-epoch 0 --train
# PROTONET
python3 main.py --datasource miniImageNet --ml-algorithm protonet --network-architecture CNN --no-batchnorm --num-ways 5 --no-strided --num-epochs 100 --resume-epoch 0 --train
# SIMPA
python3 main.py --datasource miniImageNet --img-size 84 --img-size 84 --ml-algorithm simpa --network-architecture CNN --no-batchnorm --no-strided --num-ways 5 --k-shot 1 --num-models 1 --minibatch 10 --inner-lr 0.01 --meta-lr 0.001 --num-epochs 100 --resume-epoch 0 --train
"""
import torch
from torchvision.datasets import ImageFolder
from torchvision import transforms
import numpy as np
import os
import argparse
# import regression data generator
from RegressionDataset import SineDataset, LineDataset
from _utils import train_val_split, train_val_split_regression
# import meta-learning algorithm
from Maml import Maml
from Vampire2 import Vampire2
from Abml import Abml
from Bmaml import Bmaml
from ProtoNet import ProtoNet
from Platipus import Platipus
from Simpa import Simpa
from EpisodeSampler import EpisodeSampler
# --------------------------------------------------
# SETUP INPUT PARSER
# --------------------------------------------------
parser = argparse.ArgumentParser(description='Setup variables')
parser.add_argument('--ds-folder', type=str, default='../datasets', help='Parent folder containing the dataset')
parser.add_argument('--datasource', action='append', help='List of datasets: SineLine for regression, and omniglot, miniImageNet, ImageNet for classification')
parser.add_argument('--img-size', action='append', help='A pair of image size: 32 or 84')
parser.add_argument('--ml-algorithm', type=str, default='MAML', help='Few-shot learning methods, including: MAML, vampire or protonet')
parser.add_argument('--first-order', dest='first_order', action='store_true')
parser.add_argument('--no-first-order', dest='first_order', action='store_false')
parser.set_defaults(first_order=True)
parser.add_argument('--KL-weight', type=float, default=1e-6, help='Weighting factor for the KL divergence (only applicable for VAMPIRE)')
parser.add_argument('--network-architecture', type=str, default='CNN', help='The base model used, including CNN and ResNet18 defined in CommonModels')
# Including learnable BatchNorm in the model or not learnable BN
parser.add_argument('--batchnorm', dest='batchnorm', action='store_true')
parser.add_argument('--no-batchnorm', dest='batchnorm', action='store_false')
parser.set_defaults(batchnorm=False)
# use strided convolution or max-pooling
parser.add_argument('--strided', dest='strided', action='store_true')
parser.add_argument('--no-strided', dest='strided', action='store_false')
parser.set_defaults(strided=True)
parser.add_argument("--dropout-prob", type=float, default=0, help="Dropout probability")
parser.add_argument('--num-ways', type=int, default=5, help='Number of classes within a task')
parser.add_argument('--num-inner-updates', type=int, default=5, help='The number of gradient updates for episode adaptation')
parser.add_argument('--inner-lr', type=float, default=0.01, help='Learning rate of episode adaptation step')
parser.add_argument('--logdir', type=str, default='/media/n10/Data/', help='Folder to store model and logs')
parser.add_argument('--meta-lr', type=float, default=1e-3, help='Learning rate for meta-update')
parser.add_argument('--minibatch', type=int, default=20, help='Minibatch of episodes to update meta-parameters')
parser.add_argument('--k-shot', type=int, default=1, help='Number of training examples per class')
parser.add_argument('--v-shot', type=int, default=15, help='Number of validation examples per class')
parser.add_argument('--num-episodes-per-epoch', type=int, default=10000, help='Save meta-parameters after this number of episodes')
parser.add_argument('--num-epochs', type=int, default=1, help='')
parser.add_argument('--resume-epoch', type=int, default=0, help='Resume')
parser.add_argument('--train', dest='train_flag', action='store_true')
parser.add_argument('--test', dest='train_flag', action='store_false')
parser.set_defaults(train_flag=True)
parser.add_argument('--num-workers', type=int, default=2, help='Number of workers used in data loader')
parser.add_argument('--num-models', type=int, default=1, help='Number of base network sampled from the hyper-net')
parser.add_argument('--num-episodes', type=int, default=100, help='Number of episodes used in testing')
args = parser.parse_args()
print()
config = {}
for key in args.__dict__:
config[key] = args.__dict__[key]
config['logdir'] = os.path.join(config['logdir'], 'meta_learning', config['ml_algorithm'].lower(), config['network_architecture'], config['datasource'][0])
if not os.path.exists(path=config['logdir']):
from pathlib import Path
Path(config['logdir']).mkdir(parents=True, exist_ok=True)
config['minibatch_print'] = np.lcm(config['minibatch'], 1000)
config['device'] = torch.device('cuda:0') if torch.cuda.is_available() \
else torch.device('cpu')
if __name__ == "__main__":
if 'SineLine' not in config['datasource']:
# define some transformation
transformations = transforms.Compose(
transforms=[
transforms.Resize(size=([int(i) for i in config['img_size']])),
transforms.ToTensor()
]
)
# classification
if config['train_flag']:
# training dataset
train_dataset = torch.utils.data.ConcatDataset(
datasets=[ImageFolder(
root=os.path.join(config['ds_folder'], data_source, 'train'),
transform=transformations
) for data_source in config['datasource']]
)
# training data loader
train_dataloader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_sampler=EpisodeSampler(
sampler=torch.utils.data.RandomSampler(data_source=train_dataset),
num_ways=config['num_ways'],
drop_last=True,
num_samples_per_class=config['k_shot'] + config['v_shot']
),
num_workers=config['num_workers'],
pin_memory=True
)
# testing/validation data loader
test_dataset = torch.utils.data.ConcatDataset(
datasets=[ImageFolder(
root=os.path.join(config['ds_folder'], data_source, 'val' if config['train_flag'] else 'test'),
transform=transformations
) for data_source in config['datasource']]
)
test_dataloader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_sampler=EpisodeSampler(
sampler=torch.utils.data.RandomSampler(data_source=test_dataset),
num_ways=config['num_ways'],
drop_last=True,
num_samples_per_class=config['k_shot'] + config['v_shot']
),
num_workers=2,
pin_memory=True
)
config['loss_function'] = torch.nn.CrossEntropyLoss()
config['train_val_split_function'] = train_val_split
else: # regression
regression_dataset = torch.utils.data.ConcatDataset(
datasets=[
SineDataset(amplitude_range=[0.1, 5], phase_range=[0, np.pi], noise_std=0.3, x_range=[-5, 5], num_samples=50),
LineDataset(slope_range=[-3, 3], intercept_range=[-3, 3], x_range=[-5, 5], num_samples=50, noise_std=0.3)
]
)
train_dataloader = torch.utils.data.DataLoader(dataset=regression_dataset, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(dataset=regression_dataset, shuffle=True)
config['loss_function'] = torch.nn.MSELoss()
config['train_val_split_function'] = train_val_split_regression
ml_algorithms = {
'Maml': Maml,
"Vampire2": Vampire2,
'Abml': Abml,
"Bmaml": Bmaml,
'Protonet': ProtoNet,
"Platipus": Platipus,
'Simpa': Simpa
}
print('ML algorithm = {0:s}'.format(config['ml_algorithm']))
# Initialize a meta-learning instance
ml = ml_algorithms[config['ml_algorithm'].capitalize()](config=config)
if config['train_flag']:
ml.train(train_dataloader=train_dataloader, val_dataloader=test_dataloader)
else:
ml.test(num_eps=config['num_episodes'], eps_dataloader=test_dataloader)