-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_detection_train.yaml
241 lines (208 loc) · 6.47 KB
/
pose_detection_train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright (c) 2022 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# SPDX-License-Identifier: MIT
title: Pose Detection Train
version: 1.0.0
description: "Train a model with your custom data to detect human body poses in images and videos"
long_description: "Train a tailored model using your custom data, and deploy an endpoint, which detects human body poses and their position coordinates in images and videos."
author: "cnvrg"
author_email: "info@cnvrg.io"
tags:
- training
tasks:
- title: S3 Connector
top: 300
left: 0
# Type must be according to the flow task conventions (data, exec, deploy)
type: exec
# The library data
library: s3-connector
library_version: 1.0.0
# The flattened library parameters (in this case we have training library)
command: python s3-connector.py
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg:v5.0
language: python3
# The "arguments" property changes to "params", rest remains the same.
# Params in the blueprint yaml can be used to override the arguments in the library.
params:
- key: endpoint
type: 'categorical'
values:
- 'http://s3.amazonaws.com download'
- key: bucketname
type: 'categorical'
values:
- 'libhub-readme'
- key: localdir
type: 'categorical'
values:
- '/cnvrg'
- key: prefix
type: 'categorical'
values:
- 'pose_detection_data/'
- title: Train Test Split
top: 400
left: 100
# Type must be according to the flow task conventions (data, exec, deploy)
type: exec
# The library data
library: pose-detection-recreate
library_version: 1.0.0
# The flattened library parameters (in this case we have training library)
command: python3 recreate.py
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg:v5.0
language: python3
# The "arguments" property changes to "params", rest remains the same.
# Params in the blueprint yaml can be used to override the arguments in the library.
params:
- key: images
type: 'categorical'
values:
- '/input/s3_connector/pose_detection_data'
- title: Train
top: 400
left: 300
# Type must be according to the flow task conventions (data, exec, deploy)
type: exec
# The library data
library: pose-detection-train
library_version: 1.0.0
# The flattened library parameters (in this case we have training library)
command: python3 pose.py
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg:v5.0
language: python3
# The "arguments" property changes to "params", rest remains the same.
# Params in the blueprint yaml can be used to override the arguments in the library.
params:
- key: train_dir
type: 'categorical'
values:
- '/input/train_test_split/train/'
- key: test_dir
type: 'categorical'
values:
- '/input/train_test_split/test/'
- title: Classify
top: 400
left: 500
# Type must be according to the flow task conventions (data, exec, deploy)
type: exec
# The library data
library: pose-detection-classification
library_version: 1.0.0
# The flattened library parameters (in this case we have training library)
command: python3 pose_classify.py
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg:v5.0
language: python3
# The "arguments" property changes to "params", rest remains the same.
# Params in the blueprint yaml can be used to override the arguments in the library.
params:
- key: train_dir
type: 'categorical'
values:
- '/input/train/train_data.csv'
- key: test_dir
type: 'categorical'
values:
- '/input/train/test_data.csv'
- key: test_dir_img
type: 'categorical'
values:
- '/input/train/poses_images_out_test/'
- key: box_file
type: 'categorical'
values:
- '/input/train/box_file.csv'
- key: optimizer_1
type: 'categorical'
value:
- 'adam'
- key: loss_1
type: 'categorical'
values:
- 'categorical_crossentropy'
- key: epoch_1
type: 'discrete'
values:
- '200'
- key: patience_1
type: 'discrete'
values:
- '20'
- title: Deploy Endpoint
top: 400
left: 700
# Type must be according to the flow task conventions (data, exec, deploy)
type: deploy
# The library data
library: pose-detect-inference
library_version: 1.0.0
# The flattened library parameters (in this case we have inference library)
kind: webservice
requirements:
cpu: 1
memory: 4
gpu: 0
hpu: 0
image: cnvrg:v5.0
language: python3
accept_files: false
gunicorn_config:
- key: workers
value: '1'
file_name: predict.py # the entrypoint file name
function_name: predict # the entrypoint function
prep_file: '' # preprocess file name
prep_function: '' # preprocess function
input_example:
img: txt
input_schema:
img: file
output_schema: {}
relations:
- from: S3 Connector
to: Train Test Split
- from: Train Test Split
to: Train
- from: Train
to: Classify
- from: Classify
to: Deploy Endpoint