-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_blueprint.yaml
228 lines (191 loc) · 4.93 KB
/
train_blueprint.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
title: RUL Train
version: 1.0.0
description: Tailor-train a CNN model with a customized dataset to predict when a company asset is likely to fail within given cycles
long_description: Tailor-train a convolutional neural network (CNN) model with a customized dataset to predict when a company asset is likely to fail within given cycles.
author: "cnvrg"
author_email: "libhub@cnvrg.io"
tags:
- training
tasks:
- title: s3_connector
top: 300
left: 0
type: exec
library: s3-connector15
library_version: 1.0.0
command: python s3_connector.py
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg/cnvrg:v5.0
language: python3
params:
- key: endpoint
type: 'categorical'
values:
- 'http://s3.amazonaws.com download'
- key: bucketname
type: 'categorical'
values:
- 'libhub-readme'
- key: localdir
type: 'categorical'
values:
- '/cnvrg'
- key: prefix
type: 'categorical'
values:
- 'remaining_useful_life_data/'
- title: data_preprocessing
top: 300
left: 250
type: exec
library: rul-data-preprocessing
library_version: 1.0.0
command: python3 data_preprocessing.py
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg/cnvrg:v5.0
language: python3
params:
- key: raw_train_data
type: 'categorical'
values:
- '/input/s3_connector/remaining_useful_life_data/raw_train_data.csv'
- key: common_letter_numeric
type: 'categorical'
values:
- 's'
- key: numeric_features
type: 'categorical'
values:
- 'garbage999'
- key: meta_columns
type: 'categorical'
values:
- 'id,cycle'
- key: sequence_length
type: 'categorical'
values:
- '50'
- key: upper_limit
type: 'categorical'
values:
- '45'
- key: lower_limit
type: 'categorical'
values:
- '15'
- title: cnn
top: 300
left: 500
type: exec
library: rul-cnn
library_version: 1.0.0
command: python3 cnn.py
requirements:
cpu: 3.5
memory: 15.5
gpu: 0
hpu: 0
image: cnvrg/cnvrg:v5.0
language: python3
params:
- key: x_train
type: 'categorical'
values:
- '/input/data_preprocessing/x_train'
- key: y_train
type: 'categorical'
values:
- '/input/data_preprocessing/y_train'
- key: batch_size
type: 'categorical'
values:
- '512'
- key: epochs
type: 'categorical'
values:
- '25'
- key: seed
type: 'categorical'
values:
- '58'
- key: shape_data
type: 'categorical'
values:
- '/input/data_preprocessing/shape_data.csv'
- title: batch_predict
top: 100
left: 700
type: exec
library: rul-batch-predict
library_version: 1.0.0
command: python3 predict.py
requirements:
cpu: 3.5
memory: 15.5
gpu: 0
hpu: 0
image: cnvrg/cnvrg:v5.0
language: python3
params:
- key: x_test
type: 'categorical'
values:
- '/input/s3_connector/remaining_useful_life_data/raw_test_data.csv'
- key: cnn
type: 'categorical'
values:
- '/input/cnn/cnn_model.h5'
- key: shape_data
type: 'categorical'
values:
- '/input/data_preprocessing/shape_data.csv'
- title: inference
top: 500
left: 700
# Type must be according to the flow task conventions (data, exec, deploy)
type: deploy
# The library data
library: rul-inference
library_version: 1.0.0
command: python3 predict.py
kind: webservice
requirements:
cpu: 3.5
memory: 8
gpu: 0
hpu: 0
image: cnvrg/cnvrg:v5.0
language: python3
accept_files: True
file_name: predict.py # the entrypoint file name
function_name: predict # the entrypoint function
prep_file: '' # preprocess file name
prep_function: '' # preprocess function
input_example:
img: file
input_schema:
img: file
output_schema: {}
relations:
- from: s3_connector
to: data_preprocessing
- from: s3_connector
to: batch_predict
- from: data_preprocessing
to: cnn
- from: data_preprocessing
to: batch_predict
- from: cnn
to: batch_predict
- from: data_preprocessing
to: inference
- from: cnn
to: inference