forked from thussainn/eavse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
122 lines (107 loc) · 5.03 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import librosa
import numpy as np
import torch
from pystoi.stoi import BETA, DYN_RANGE, MINFREQ, N, NUMBAND
from pystoi.utils import thirdoct
from torch import nn
from torch.nn.functional import unfold
import pdb
from config import stft_size, window_shift, window_size
eps = torch.finfo(torch.float32).eps
class STOILoss(nn.Module):
def __init__(self,
sample_rate: int = 16000,
extended: bool = True):
super().__init__()
# Independant from FS
self.sample_rate = sample_rate
self.extended = extended
self.intel_frames = N
self.beta = BETA
self.dyn_range = DYN_RANGE
self.eps = torch.finfo(torch.float32).eps
self.win_len = window_size
self.nfft = stft_size
win = torch.from_numpy(np.hanning(self.win_len + 2)[1:-1]).float()
self.win = nn.Parameter(win, requires_grad=False)
obm_mat = thirdoct(sample_rate, self.nfft, NUMBAND, MINFREQ)[0]
self.OBM = nn.Parameter(torch.from_numpy(obm_mat).float(),
requires_grad=False)
def forward(self, est_targets: torch.Tensor,
targets: torch.Tensor, ) -> torch.Tensor:
if targets.shape != est_targets.shape:
raise RuntimeError('targets and est_targets should have '
'the same shape, found {} and '
'{}'.format(targets.shape, est_targets.shape))
x_spec = targets.reshape(-1, 256, 256, 1)
y_spec = est_targets.reshape(-1, 256, 256, 1)
# Apply OB matrix to the spectrograms as in Eq. (1)
x_tob = torch.matmul(self.OBM, torch.norm(x_spec, 2, -1) ** 2 + self.eps).pow(0.5)
y_tob = torch.matmul(self.OBM, torch.norm(y_spec, 2, -1) ** 2 + self.eps).pow(0.5)
# Perform N-frame segmentation --> (batch, 15, N, n_chunks)
batch = targets.shape[0]
x_seg = unfold(x_tob.unsqueeze(2),
kernel_size=(1, self.intel_frames),
stride=(1, 1)).view(batch, x_tob.shape[1], N, -1)
y_seg = unfold(y_tob.unsqueeze(2),
kernel_size=(1, self.intel_frames),
stride=(1, 1)).view(batch, y_tob.shape[1], N, -1)
# Compute mask if use_vad
mask_f = None
self.extended = False
if self.extended:
# Normalize rows and columns of intermediate intelligibility frames
x_n = self.rowcol_norm(x_seg, mask=mask_f)
y_n = self.rowcol_norm(y_seg, mask=mask_f)
corr_comp = x_n * y_n
correction = self.intel_frames * x_n.shape[-1]
else:
# Find normalization constants and normalize
norm_const = (masked_norm(x_seg, dim=2, keepdim=True, mask=mask_f) /
(masked_norm(y_seg, dim=2, keepdim=True, mask=mask_f)
+ self.eps))
y_seg_normed = y_seg * norm_const
# Clip as described in [1]
clip_val = 10 ** (-self.beta / 20)
y_prim = torch.min(y_seg_normed, x_seg * (1 + clip_val)) ## Line 174 stoi code
# Mean/var normalize vectors
y_prim = meanvar_norm(y_prim, dim=2, mask=mask_f)
x_seg = meanvar_norm(x_seg, dim=2, mask=mask_f)
# Matrix with entries summing to sum of correlations of vectors
corr_comp = y_prim * x_seg
# J, M as in [1], eq.6
correction = x_seg.shape[1] * x_seg.shape[-1]
# Compute average (E)STOI w. or w/o VAD.
sum_over = list(range(1, x_seg.ndim)) # Keep batch dim
# Return -(E)STOI to optimize for
return torch.mean(1 - torch.sum(corr_comp, dim=sum_over) / correction)
@staticmethod
def rowcol_norm(x, mask=None):
""" Mean/variance normalize axis 2 and 1 of input vector"""
for dim in [2, 1]:
x = meanvar_norm(x, mask=mask, dim=dim)
return x
def meanvar_norm(x, mask=None, dim=-1):
x = x - masked_mean(x, dim=dim, mask=mask, keepdim=True)
x = x / (masked_norm(x, p=2, dim=dim, keepdim=True, mask=mask) + eps)
return x
def masked_mean(x, dim=-1, mask=None, keepdim=False):
if mask is None:
return x.mean(dim=dim, keepdim=keepdim)
return (x * mask).sum(dim=dim, keepdim=keepdim) / (
mask.sum(dim=dim, keepdim=keepdim) + eps
)
def masked_norm(x, p=2, dim=-1, mask=None, keepdim=False):
if mask is None:
return torch.norm(x, p=p, dim=dim, keepdim=keepdim)
return torch.norm(x * mask, p=p, dim=dim, keepdim=keepdim)
if __name__ == '__main__':
y, sr = librosa.load(librosa.ex('trumpet'), sr=16000)
noisy_speech = torch.from_numpy(y[:40900])
clean_speech = noisy_speech
sample_rate = 16_000
loss_func = STOILoss(sample_rate=sample_rate)
S = torch.from_numpy(np.abs(librosa.stft(y[:40900], win_length=window_size, n_fft=stft_size, hop_length=window_shift, window="hann", center=True)))
S_new = torch.cat((S.unsqueeze(0), S.unsqueeze(0)), dim=0)
loss_batch = loss_func(S.unsqueeze(0), S.unsqueeze(0))
print(loss_batch)