diff --git a/algorithms/SGDClassifier-LDA-htcai.ipynb b/algorithms/SGDClassifier-LDA-htcai.ipynb new file mode 100644 index 0000000..ce5d47d --- /dev/null +++ b/algorithms/SGDClassifier-LDA-htcai.ipynb @@ -0,0 +1,839 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create a logistic regression model to predict TP53 mutation from gene expression data in TCGA" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import os\n", + "import urllib\n", + "import random\n", + "import warnings\n", + "import resource\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn import preprocessing, grid_search\n", + "from sklearn.linear_model import SGDClassifier\n", + "from sklearn.cross_validation import train_test_split\n", + "from sklearn.metrics import roc_auc_score, roc_curve\n", + "from sklearn.pipeline import make_pipeline\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", + "from sklearn.decomposition import PCA\n", + "from statsmodels.robust.scale import mad" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "plt.style.use('seaborn-notebook')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Specify model configuration" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# We're going to be building a 'TP53' classifier \n", + "GENE = '7157' # TP53" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Parameter Sweep for Hyperparameters\n", + "n_feature_pca = 300\n", + "n_feature_kept = 10\n", + "param_fixed = {\n", + " 'loss': 'log',\n", + " 'penalty': 'elasticnet',\n", + "}\n", + "param_grid = {\n", + " 'alpha': [10 ** x for x in range(-5, 2)],\n", + " 'l1_ratio': [0, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 1],\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Here is some [documentation](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html) regarding the classifier and hyperparameters*\n", + "\n", + "*Here is some [information](https://ghr.nlm.nih.gov/gene/TP53) about TP53*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2min 48s, sys: 4.95 s, total: 2min 53s\n", + "Wall time: 2min 55s\n" + ] + } + ], + "source": [ + "%%time\n", + "path = os.path.join('..', 'download', 'expression-matrix.tsv.bz2')\n", + "X = pd.read_table(path, index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1min 33s, sys: 3.99 s, total: 1min 37s\n", + "Wall time: 1min 38s\n" + ] + } + ], + "source": [ + "%%time\n", + "path = os.path.join('..', 'download', 'mutation-matrix.tsv.bz2')\n", + "Y = pd.read_table(path, index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "y = Y[GENE]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "sample_id\n", + "TCGA-02-0047-01 0\n", + "TCGA-02-0055-01 1\n", + "TCGA-02-2483-01 1\n", + "TCGA-02-2485-01 1\n", + "TCGA-02-2486-01 0\n", + "TCGA-04-1348-01 1\n", + "Name: 7157, dtype: int64" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# The Series now holds TP53 Mutation Status for each Sample\n", + "y.head(6)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.645907\n", + "1 0.354093\n", + "Name: 7157, dtype: float64" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Here are the percentage of tumors with NF1\n", + "y.value_counts(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set aside 10% of the data for testing" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Size: 20,530 features, 6,575 training samples, 731 testing samples'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Typically, this can only be done where the number of mutations is large enough\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)\n", + "'Size: {:,} features, {:,} training samples, {:,} testing samples'.format(len(X.columns), len(X_train), len(X_test))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reduce the dimensionality via Principal Component Analysis and Linear Discriminant Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pca = PCA(n_components=n_feature_pca)\n", + "lda = LinearDiscriminantAnalysis(n_components=n_feature_kept)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define pipeline and Cross validation model fitting" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Include loss='log' in param_grid doesn't work with pipeline somehow\n", + "clf = SGDClassifier(random_state=0, class_weight='balanced',\n", + " loss=param_fixed['loss'], penalty=param_fixed['penalty'])\n", + "\n", + "# joblib is used to cross-validate in parallel by setting `n_jobs=-1` in GridSearchCV\n", + "# Supress joblib warning. See https://github.com/scikit-learn/scikit-learn/issues/6370\n", + "warnings.filterwarnings('ignore', message='Changing the shape of non-C contiguous array')\n", + "clf_grid = grid_search.GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=-1, scoring='roc_auc')\n", + "pipeline = make_pipeline(\n", + " StandardScaler(), # Feature scaling\n", + " pca, # Dimensionality reduction via PCA\n", + " lda, # Dimensionality reduciton via LDA\n", + " clf_grid)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The max memory usage is 4.957 GB\n", + "CPU times: user 10min 13s, sys: 15.8 s, total: 10min 29s\n", + "Wall time: 5min 32s\n" + ] + } + ], + "source": [ + "%%time\n", + "# Fit the model (the computationally intensive part)\n", + "pipeline.fit(X=X_train, y=y_train)\n", + "best_clf = clf_grid.best_estimator_\n", + "print(\"The max memory usage is {:.3f} GB\".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/(1024**3)))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'alpha': 1e-05, 'l1_ratio': 0}" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf_grid.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SGDClassifier(alpha=1e-05, average=False, class_weight='balanced',\n", + " epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0,\n", + " learning_rate='optimal', loss='log', n_iter=5, n_jobs=1,\n", + " penalty='elasticnet', power_t=0.5, random_state=0, shuffle=True,\n", + " verbose=0, warm_start=False)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_clf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualize hyperparameters performance" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def grid_scores_to_df(grid_scores):\n", + " \"\"\"\n", + " Convert a sklearn.grid_search.GridSearchCV.grid_scores_ attribute to \n", + " a tidy pandas DataFrame where each row is a hyperparameter-fold combinatination.\n", + " \"\"\"\n", + " rows = list()\n", + " for grid_score in grid_scores:\n", + " for fold, score in enumerate(grid_score.cv_validation_scores):\n", + " row = grid_score.parameters.copy()\n", + " row['fold'] = fold\n", + " row['score'] = score\n", + " rows.append(row)\n", + " df = pd.DataFrame(rows)\n", + " return df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Process Mutation Matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
alphafoldl1_ratioscore
00.0000100.00.945005
10.0000110.00.947590
\n", + "
" + ], + "text/plain": [ + " alpha fold l1_ratio score\n", + "0 0.00001 0 0.0 0.945005\n", + "1 0.00001 1 0.0 0.947590" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cv_score_df = grid_scores_to_df(clf_grid.grid_scores_)\n", + "cv_score_df.head(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAEaCAYAAAC1judbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcnXV5N/7PZJmZLBOSQCBhcZevKJsoAiEg9LH1qdKq\n9bGVWm1VqtXHSrUuxeoj6q8uxeJCa12oVrtof9VSX20V7AJF0GprrT+6+FUfq62QkAiBJGQn8/tj\nzkzObMnJZO6ZM8n7/XrllbmXc67rnPuc63zPfZ37vnsGBwcDAAAAAAAAABzcvNlOAAAAAAAAAADm\nCk12AAAAAAAAAOiQJjsAAAAAAAAAdEiTHQAAAAAAAAA6pMkOAAAAAAAAAB3SZAcAAAAAAACADi2Y\n7QQ4cpVSHprkllrrww+wzpuTDNZa3zoD+bw1yd5DjVVKOSXJHyZZlaQmeV6tdXsp5aIkNyT5r9aq\nX6+1vng6cwZG65a6MlldGLPOwiS/l+SJSba31qmtZdckuSzJg0leUmv9Umv+rya5IklPkqtqrTe0\n3d+yJLcneXqt9b8CNO5IrzmtZScl+cda64lN5Q8c3ByvNz9ba/1W2/Izknyy1np6U3kCh2cu1Zy2\ndX80yetrrU9pKh9genRLjWmLNek+4YONa4Du0e21pZRyTJI/SvKIJBuT/HStdeMEt5t0Hw1zjyPZ\nadrgbCdQSllWSrk+yauneBcfSPLbtdbHJvlakv/Tmn9ukmtqree0/mmww8yY9bqSyetCu1cm2dZa\n51VJPp4kpZT/leQxtdbTkjwrycdLKfNKKecm+dkkZya5KMk1pZTlrds8KckXkzy62YcFTOCIrDmt\nZU9L8ndJTmj+IQAdmKv15hPDC0opL0jy+SSLZyBX4PDMiZpTSulp/Rj5k7EfE+aSWa8xHe4TnnRc\nA3Slbq4t/0+SW1v15Pok75/gts/OJPtomJscyc5hK6XMT/K7SR6XoZ20NclPjVnnY0n2JTkjybIk\nb6u1/lFr8XmllNuTnJjk92utbymlDGToV4QntebfWmv9+TH3+cwkb87owlprrZePSfEZSb6V5LfG\n3P6RrbxXZuiXiq+stf7LmHUWJLm4dR9J8vtJbknyaxlqsh9fSvmZDB3N/opa6w8mfaKAjnVzXZmk\nLvx9hupCu6cneVPrDr5YSjm2lHJykqcl+VRr/rdLKd9LsjbJjyT5s1rrniSbSim3ZOhXjX+YoaPb\nX57kDw7y1AFTcJTWnNuSvDBDX+ru6OR5Ag7fEV5vtiT5iSTPjR3U0BWOkJpzWpKSoe9ErzzEpwBo\nUDfXmJYJ9wmPMeG4xj5emD1zuLY8PUMHTiVDPw78nVLK/Frrg2PWmWwfDXOQJjvTYW2SXbXWC0sp\nPRk6IuppSf55zHonJTk/yZokXyul/HVr/vFJLkhyTJLvl1LenaFi8/Va60+3Ttvz76WUx9davz58\nZ7XWP0/y5wdLrtb6B8nIqULafTzJ/661fqOUclqGTv3+mDHrHJfk/lrrvtb0+iQnt/7enOSPa61/\nUUp5aYaK47qD5QN0pJvrykR14aQJ1juxtSxt650ywfwNGaorJyb56pj1T27l9ZJk6CiOg+QGTM3R\nWHNSa31OkpRSDpICMI2OxHqzIcnJtdZ/SPKc1mkcge4w52tOrfXfk7yklPLkjh81MFO6ucYcaJ9w\nu8m+L2myw+yZq7VlpJ7UWh8spdyfoUvibJhonZaRfTTMTZrsHLbWr/zuKaW8PENN6kclWTrBqh9r\nfXm6s5RyW/Y3pD9fa92b5J5SyqYkK2utnyqlnFtKuTJDv1peOfY+235Z1O6bE/yyaJxSypIMHYn+\nsbam1eJSyopa6+a2VSdqaO1rPe6Xtz0HHyqlvLOUMlBr3Xqw+MCBdXldmbQujDF2vZ4MXWtnstt3\ner/ANDtKaw4wC47QejPZesAsO0JqDtClurzGdEotgi5zhNSWZKi+jK0nas4RRpOdw1ZK+ckkb0ny\nniQfzdCvkScqFnvb/p7fNt0+fzBJTynllzN0CpAPJfnrJKePvc9Of1k0iflJdtRaz2l7HCfWWjeX\nUoZ/vTSY5ElJjiml9NRaBzP0q6i7Wuu/Ick7WvOH198zxXyANl1eVzYlWTZRXRjjB0lWJ/lua3p4\nvTtb89PB/HqQXIBpcJTWHGAWHOH1BugyR0jNAbpUl9eYThnXQJeZw7VleP/LXa1T3g8kuWeSdYap\nOXPcvNlOgCPC/0jyJ7XWTyTZmKFras2fYL2fTpLW6QOflOSLE6wzXNiekuRDtdZPteadPcl9Tkmt\ndUuSb5dSntfK6UeT3Npa9vjWv3Nav3i6NcnPtG7680k+1/r7WUme3br9C5J8pda6c7pyhKNc19aV\nVl34YvbXhRck+fwEq36+tSyllHUZ+mHPDzJUQ55XSplXSnlUkkcn+cfW+s8upfSXUlZl6Brtf3uo\n+QFTcjTWnIlyBpp3JNebiXIDZteRUHOA7tW1NeYQdDKuAWbWXK0tn0urniR5bpIv1tHXYx9e52D7\naJhDNNmZDh9J8rOllK8l+XSSLyd5+ATrLS6l/FOSv0jyi2NOyz5s+Kjw9ya5urX+bye5fZL7PBzP\nS3JFKeUbSX4jraI8gf+d5KWllH9NcmGSN7XmvyDJq0opd2So+X7FNOcHR7NuryvtdWFdkjcmSSnl\npaWUq1vrXJekv7XOe5M8P0lqrZ9O8m9J/r8kNyR5Ua11V631H5P8YZJ/ytCPe95Ya22/Rk/7YwGm\n11FXcybJGWjekVhvfu4AuQGz60ioOUD36vYaM6EpjGuAmTUna0uS/5PkglY9+aUMjXNSSvmJUsqH\nk4730TCH9AwO+u5L80opH0tyc+vXRwCHTV0BZpKaA8wU9QaYSWoO0CQ1BmiC2kK3aPya7KWU85K8\ns9Z66Zj55yb5rdbkhiQ/V2vd3XQ+zBq/5gCmm7oCzCQ1B5gp6g0wk9QcoElqDNAEtYWu0OiR7KWU\n12boVJXbaq1rxyz7epJn11q/W0p5UYauT/DtxpIBAAAAAAAAgMPU9DXZv5PkWWNnllJOTXJPkleX\nUm5JslKDHQAAAAAAAIBu12iTvdZ6Q5K9Eyw6LskFSd6f5ClJnlJKuaTJXAAAAAAAAADgcDV+TfZJ\n3JPkO7XWbyVJKeXGJE9McsuBbrR374ODCxbMbz474EjT0+mK6gwwBWoM0DR1BmiSGgM0raM6o8YA\nU2QsAzRtwjozU032scG/m2RpKeURtdbvJrkoyfUHu5PNm7c3kRtwhFu1aqDjddUZ4FCpMUDT1Bmg\nSWoM0LRO64waA0yFsQzQtMnqzEw12QeTpJRyeZIltdbrSykvTvLJUkqSfKnW+vkZygUAAAAAAAAA\npqTxJnut9ftJ1rb+/mTb/FuSnNd0fAAAAAAAAACYLvNmOwEAAAAAAAAAmCs02QEAAAAAAACgQ5rs\nAAAAAAAAANAhTXYAAAAAAAAA6JAmOwAAAAAAAAB0SJMdAAAAAAAAADqkyQ4AAAAAAAAAHdJkBwAA\nAAAAAIAOabIDAAAAAAAAQIc02QEAAAAAAACgQ5rsAAAAAAAAANAhTXYAAAAAAAAA6JAmOwAAAAAA\nAAB0SJMdAAAAAAAAADqkyQ4AAAAAAAAAHdJkBwAAAAAAAIAOabIDAAAAAAAAQIc02QEAAAAAAACg\nQ5rsAAAAAAAAANAhTXYAAAAAAAAA6FDjTfZSynmllJsPsPxDpZS3N50HAAAAAAAAAByuRpvspZTX\nJvlIkr5Jlr80yelN5gAAAAAAAAAA06XpI9m/k+RZEy0opVyQ5NwkH2o4BwAAAAAAAACYFo022Wut\nNyTZO3Z+KWV1kjcneUWSniZzAAAAAAAAAIDpsmCW4j4nybFJPpdkTZJFpZRv1lo/caAbrVixOAsW\nzJ+J/ICjlDoDNEmNAZqmzgBNUmOAJqkxQNPUGWA6zVSTfdTR6rXW65JclySllJ9PUg7WYE+SzZu3\nN5MdcERbtWqg43XVGeBQqTFA09QZoElqDNC0TuuMGgNMhbEM0LTJ6kzT12QfNpgkpZTLSylXzFBM\nAAAAAAAAAJhWjR/JXmv9fpK1rb8/OcHyjzedAwAAAAAAAABMh5k6kh0AAAAAAADowN69e/KNb3w9\ne/fume1UgAlosgMAAAAAAEAXufHGz+Waa34jX/jCjbOdCjABTXYAAAAAAADoIl//+j8lSf7lX742\ny5kAE9FkBwAAAAAAgC40ODg42ykAE9BkBwAAAAAAgC7S09Mz2ykAB6DJDgAAAAAAAF3EEezQ3TTZ\nAQAAAAAAoAs5oh26kyY7AAAAAAAAAHRIkx0AAAAAAAC6kNPGQ3fSZAcAAAAAAIAu4jTx0N002QEA\nAAAAAKCLOIIdupsmOwAAAAAAAHQhR7RDd9JkBwAAAAAAAIAOabIDAAAAAAAAQIc02QEAAAAAAKAL\nuTY7dCdNdgAAAAAAAOhCrskO3UmTHQAAAAAAAAA6pMkOAAAAAAAAXcjp4qE7abIDAAAAAABAF3K6\neOhOmuwAAAAAAAAA0KEFTQcopZyX5J211kvHzL88yZVJ9iS5o9b68qZzAQAAAAAAAIDD0eiR7KWU\n1yb5SJK+MfP7k7w1yZNrrRclWV5KuazJXAAAAAAAAGAucU126E5Nny7+O0meNcH8XUnW1lp3taYX\nJNnZcC4AAAAAAAAwZ7gmO3SnRpvstdYbkuydYP5grXVTkpRSfjnJklrr3zSZCwAAAAAAAAAcrsav\nyT6ZUkpPkt9M8ugkP9XJbVasWJwFC+Y3mhdwdFNngCapMUDT1BmgSWoM0CQ1BmjaXKszCxcO5bpg\nwbysWjUwy9kAY81Uk32ic1l8OMmOWuszO72TzZu3T19GwFHjUAYg6gxwqNQYoGnqDNAkNQZoWqd1\nRo0BpuJIHsvs2fNgkmTv3n3ZtGnrLGcDR6/J6sxMNdkHk6SUcnmSJUm+luSFSb5YSrm5tfx9tdbP\nzlA+AAAAAAAA0NUGBwdnOwVgAo032Wut30+ytvX3J2cyNgAAAAAAAMxVPT0TnSwamG3zZjsBAAAA\nAAAAAJgrNNkBAAAAAAAAoEOa7AAAAAAAANCFXJMdupMmOwAAAAAAAHQh12SH7qTJDgAAAAAAAAAd\n0mQHAAAAAACALuR08dCdNNkBAAAAAACgCzldPHQnTXYAAAAAAADoQo5kh+6kyQ4AAAAAAABdyJHs\n0J002QEAAAAAAACgQ5rsAAAAAAAAANAhTXYAAAAAAADoQq7JDt1Jkx0AAAAAAAC6kGuyQ3fSZAcA\nAAAAAACADmmyAwAAAAAAAECHNNkBAAAAAACgC7kmO3QnTXYAAAAAAADoQq7JDt1Jkx0AAAAAAAAA\nOqTJDgAAAAAAAF3I6eKhO2myAwAAAAAAQBdyunjoTo032Usp55VSbp5g/k+UUr5aSrm9lHJF03kA\nAAAAAAAAwOFqtMleSnltko8k6Rszf0GSa5M8JcklSV5SSlnVZC4AAAAAAAAAcLiaPpL9O0meNcH8\n05J8u9a6pda6J8ltSS5uOBcAAAAAAACYM1yTHbpTo032WusNSfZOsGhZkvvbprcmOabJXAAAAAAA\nAGAucC126G4LZinulgw12ocNJLnvYDdasWJxFiyY31hSAOoM0CQ1BmiaOgM0SY0BmqTGAE2ba3Vm\nwYKh42QXLpyfVasGZjkbYKyZarKP/bnNfyR5VClleZLtGTpV/DUHu5PNm7c3kBpwpDuUAYg6Axwq\nNQZomjoDNEmNAZrWaZ1RY4CpOJLHMnv2PJgk2bt3XzZt2jrL2cDRa7I6M1NN9sEkKaVcnmRJrfX6\nUsqrk3whQw3462ut62coFwAAAAAAAACYksab7LXW7ydZ2/r7k23z/yrJXzUdHwAAAAAAAACmy7zZ\nTgAAAAAAAAAA5or5V1999Wzn0LHt23dfPZXb3X33hnznO99MT8+8LF26dJqzEne2485mbHHnRtwl\nS/re0um66oy44op7qNQYccWdO7Hnalx1RlxxxW0yrhojrrhzI+5sxp6pOjPXasxsxhYX9jtSxzL/\n/d//lb/8y8/m+ONXZePGu3PWWefkmGOOmZHYwGiT1ZmewcHBmc5lyjZt2jqS7AMPbMvGjRuzZ8/u\n7Nixo/Vve3bt2pXdu3e1/t+dbdu25MILL8ill16am2++OX//97dlYGAgvb196evrS29vb3p7+7Jo\n0aLWv8Xp6+vPokWLsnr1msybN/pg/+3bt2fjxg3Zs2fPSMwdO3Zk586d2b17KObu3buybdvWrF17\nQS699JLcfPPNueWWobjtMfv6+tLf359FixZn8eKhuP39/VmzZk3mzZs/Ku7OnTty993DcbePxN65\nc2d27do9Enso7vltcb+YgYFl6esbitnb25u+vr709Q093sWLF6e/vz99ff1ZvXpNFiwYfQWB3bt3\nZf369RM8zztHnuNdu3ZNEPfvMzBwzKiYvb3Dj3foeV60aFF6e/uyZs2aLFiwcFTcPXv2ZMOGu7Jr\n167s3Llz1PO8a9fO1vO8O7t27cy2bVtyySVPbm3jW/KlL/1DBgaWtZ7n4ce7/3nu7+9Pb29vVq9e\nk97evlFx9+7dmw0b1mfXrp1tj3dHdu7cMfK62rNn6DFv3boll1xy8ai4S5cObeOFC3vT19c7sn2H\nH+/Chb054YTV6e/vHxX3wQcfzIYNd2Xnzl3ZtWtntm/f3tq+O0Zt3/1xL2qL++UsXTowZvv2t23f\nRVm4cGFOOGFNFi1aNCruvn37smHD+uzYsaP1mLePPOb2x7p7965s2bI1l1yybiTu7bd/KUuXLhu1\nffv6+kY9zwsX9ub440/IkiVLRsUdHBzM3XdvyPbtD2TXrl2tx7uj9Xjbt+/Q433yk9eNvIdvu+3L\nE2zfvnHP83HHrcrAwECSZNWqgZ6DFpiW4Tqzb9+DWb9+/chr7sDbZPRzM3abtL/227fJ8cevzuLF\nizveJu0xd+8eitv+3Nx++5cn3SbDNW46tsm2bVtz8cUXdrhNht7vQ9vkuAwMLBv3nG/ceHe2bdua\n3bt3j3me99fy3bt3Z+vWrbn44rVtcYdeg/vrau/Ia39/jenNypXH5phjlo+L+8MfbsrWrVuya9eu\nca/90Z8jW3PRRfvjfvGLXxr1OTL0ft//eBcvXpze3t4cc8zyrFx57Li4mzffm/vu25zdu4fq6vbt\n20c9z8Pxt23bmnXr9se99dbhuGO3b/vnV18GBpbluONWjYt7//335957fzjyOTIcd+jzq337bhkT\n9/aR2ta+ffv6hh7r8ONdunQgxx9/wri4W7duzQ9/uKntc2T7yOf16O27JevWjf28Hr99+/v3f371\n9fVl8eIlOeGE1enpGf02f+CBB7Jx493Zs2d3du7c/x6eeJywdtTn9bJlE23fyccJU6kxh7ZNto56\nbg62TRYtWpS+vr4sWbI0xx9/wrjnZtu2rdm0aew22THqs33yMdRE26R/5PXf398/6TbZvv2B3H33\n3dm7d8/Ia3/sNtmzZ/eEY6iJtslQrMUHHbvt2LEjd9+9Pnv27MnOnTtG6tvQ4x2u5xON3caOofrS\n19c76nnu71+U/v6+rF59YubPHz1227VrVzZsWD/ha3/nzv2fsePHULeOPM/Dj3X/58j+ej7ZGGr3\n7t3ZsOGu7N499rW/c9x77sILz88ll+wfuw3V1P5xY6jh53lozNiXE05Yk97e3lFx9+7dk/Xr12f3\n7l0TjpEPZQzV3z/xZ/vq1WvS1zd67LZ/DLWz7fHuyK5dO9oe767s2rV7gjHUP2Tp0qWjtm9//1Cd\nGX7MQ2Oo1envHzuGejAbNmwY9Xk99B7eOfKaHo49dgw12Thhf9zx44Sp1Jnx22T/94eZ2Sa7snPn\njpH3+9A22f+em3ibtD83w++5qY9r27fJwca1AwPLRr3n2se1ixYtyoIFC3PCCSdk8eLJx1BD31va\nv6cdeFzbPnYbO45vf55XrVqVpUsHxsXduPHuPPDAttZYpv153v85N9nYrf1zpLd34tf+ypXHTbgT\nb+wYav9YZveoz9iJx26jv4sPf7YPP8+9vb1ZvnxlVqxYMS7uPffcky1b7ht5vPs/v0a/57ZunXzs\n1v5dvP157uvry7Jlx+TYY48bF/e++zZn8+Z7Jx27TT6G2j92a/+8bn+e+/r6snTpQFatOn5c3C1b\n7s8999zT+hxpf57Hb9+DjROG6szocUL75/VUxzL33ntP7r//vrZx/I6RsUz7e26ibTL0WpjquPa+\n3HvvPSPbpH0sM9VtMvx+P/C4dkt++MMfjmyT9v1QBxrXjt0mhzOuna39X+1jqKnt/+od9TwfeP/X\nzpGxW/sY6uD7v25tG6tObf/Xhg3rDziGmur+r+Ex1OrVJ2bhwqnt/xp6L90/bv/X+O8Fh77/a6Ix\nVCfjhNHbd+z+r6HP6+H9X53WmfYa08k2GX7Pjd0m48e1/R1vk07Gtfu3yeRjqLHbpH2/zJo1h75N\nDj6unWybLMrBxrUT7/8aPa491P1f7a+F2dv/dXyWLNGQPxpMdSyzadPGbNu2dYJxbftrcPrHtZ16\n3et+Jc997k/nqU99am666ab8yZ/8v3nXu9475fsDpm6yOjMnm+xbt27Nq171suzcufOgtznppJPy\n0Y9+dGT6RS96Ue68886O4j372T+TZz3rOSPTe/fuySte8ZJs27a10bhPferT8/znv3BkenBwMK96\n1cvzwx9uajTuunUX55d+6ZWj5r3xja/N9773n43GPeusc/La175h1Lx3vOMt+bd/u6Oj20819qMe\n9ehcffU7Rs277rpr85WvfKnRuCesXpPfevd1o+Z97GMfyd/+7U2Nxl227Jj89m9/eNQX2D/900/m\ns5/9TKNxFy1alPe970OjBtOf//xf5I/+6OONxu3t7c27331dVq48dkoDrU984vfyhS98vtEcBwYG\nct11Hxn15f4zn/mT3HDDnzYat79/Ud73vt8d9UXjC1/4XD7xiY8e4FaHH3fhwoW55pr3j9pRdvvt\nt+Z3f/f9jcbt6enJ29/+7pxyykNH5n3jG/+ca655e6Nxk+RNb3pbSjltZPrb3655y1t+vfG4r371\nr+Wcc544Mn3nnT/IVVe9Ovv27Ws07kte8opcfPElI9P33ntPXvOaX87u3bsbjfu85/18fvzHf2Jk\nevv27bnyypdmx44djcZ9xjOenec85/Ip1Zj16+/Kr/3aq/Lggw82muMVV7wsl1zyP0am77tvc179\n6ldk9+5djcZ97nOfn8sue8bI9M6dO/PKV74027c/0Gjcyy57Zp773J8bmd63b19e+cqX5r77Njca\n99JLn5IXv/iXRs17/et/JXfe+YNG45577nm58srXjpr31re+Md/61jcbjXvaaY/Lr//66B/wXnvt\nO/PP//xPHd1+qrFPOeUhecc7rh0178Mf/p3ceuvNjcZdufLYvO99HxzV9PjjP/54Pve5v2g07pIl\nS3LddR9Ob2/flOrM+9737vzjP/5DozmeeOJJ+c3ffN+oeb/3ex/MzTf/TaNxly9fkfe//0OjGkKf\n+tQf5i//8s8bjbt48ZK8//0fHLVz+i//8rP51Kf+oNG4vb19ufba387y5ft30N1yy9/m+ut/t9G4\n8+fPzzvecW1OPPGkkXn/9E9fzXvf+5uNxk2St7zlnXnkIx81Mv3v//6vefvbr2487utf/6acccZZ\nI9Pf//5/5td//bUHuMX0xH3FK16V88+/cGR648a787rXXZm9e/c2GvcXfuEX85SnPHVKNabW/8jb\n3vamjm5zODm+5jVvyNlnnzMy/d///V95wxt+NZ3syzqcuC972Stz4YUXj0z/8Ieb8trXvjJ79uxp\nNO4LXvCi/NiPPW1k+oEHtuXKK1+WnTubHdc+61nPybOf/TMj03v37s0v//IvZuvWZvd//diP/Xhe\n8IIXj5r3qle9PJs2bWw07tq16/Lyl//KqHlvetPr85//+X8bjXvmmWfnda9746h573rX23LHHd/o\n6PZTjf2IRzwyb33ru0bN+53feW++/OXbGo17/PEn5NprfyfJ1JrsV199Vb7znW83ll+SnP64M/Jr\nV7151Lxrrnl7vvGNf+7o9lON/dCHPjy/8RvXjJr3wQ++P7fddmujcY87blXe854PjBrX/sEffCw3\n3fRXjcZdunQg11334VE/aLjhhj/NZz7zJ43G7e/vz3ve87sjB+Fw5JrKWOarX/1y3v/+3+roNodT\nZ972tt/Mwx/+iE7TG3HffZvzjndcPS7uVVddPep7ATAzJqszc/Ka7IsWLcqFFz65o3U3bdqUm24a\nal7edNNN2bTp4I3qZGjQ8ZjHPHbUvPnzF+Siiy5pNO7SpQM5/fQzR83r6elpPO7ChQtz9tlPGDf/\nggvWNRo3GdpBPNaTnnRBx7efauz2nRjDzjnnienp6extMdW4F60b/9o988yzsmjR4gnWnr64F198\nybjHdtppj8uKFSsbjbtu3ZPT3z/617mPfnTJmjUnNhr3ggsuGnfEz6E444yzOv6165RfCxddMu7I\nx9NOe9yER9BMZ9x16y4e98vlRz7y1Jx00smNxr3ggnXjjmR/2MMenkc96tRG45533tpxR5SvWXPS\nuFo73XHPOeeJOf741aPmrVp1fJ7whCc1Gvexjz193LZcvnxFzj9/baNxH/GIR4370rB06UAuuOCi\nRuOuWXNiHv3oMmpef39f1k1Qa6cz7ooVK3PaaY/raN2JHHPM8gk/h6Yzx4c97BF5+MMfOWrekiVL\nc+GFzW6T1avX5NRTR2+T3t6FjW+TY45Znsc97oxR82ZiDNXf358zzzx73Py1a5t9npPknHPOHTev\n6fd6MvE4rdPadjixJ3pOzz77nHFH1U933IsuumTcUYWPe9yZWbZs/NlZpjvu2DMVHIr2H1sdzFRz\nbG9ADTvzzMePO2vTdMedeJucMeGZa6Yz7rp1Tx531Nmpp5accMLqSW4xPXEvvPCicePShz/8kXnY\nwzrbWTf1sduF43bgnXzyKeO+J0933HPPPX/c0curV68Z1WhtIu4ZZ5w97jvKypXH5bzzmq2rp576\nmDzkIQ9mlCsPAAAcIklEQVQbNW/ZsmMa/y5+yikPGfVDhkN1/PGrO64zU83x9NPPHPUjjyRZuXJl\n49vkUY86NQ972MNHzRsYWNb4NjnppJPzyEeO/m7U379owlo7nXGPPfa4cePa+fPn56KLLm007pIl\nS0f9qGVY02O3+fMX5PGPH//aveCCZsfmycT7v8499/yOb38438XHevzjnzBuf8R0x+10W06m6e9L\nSXLuk8Y//xNtp+mOvXbt+G1y9tlPGHeGhemOO9EY6vTTz+z41NeHN64d/dge85jHTni2kumMe+GF\nF487+xEMO/nkh+TUUx/T0bpTfQ0+6UkX5LjjOtvPO9aePXsmjNvJD/6AmXPQI9lLKfNqrftaf6+q\ntXY+Uplm7b9mPBR33fWDrF9/Z1avXpMTTzxl3GCiKe1x16w5edypt5qyfv2dueuuH8xy3JPGnfKr\nKUOnNbozGzasz0knnZzVq086+I2mJe6+rF//g2zYsD4nnnhy1qyZ+bhr1pyUE0/srDF6uAYHB3PX\nXf89J+NO9ZRBnbJNZjLuD7Jhw11HRdyk/XPkxJx44smz8Pk1W3Fn7/N6KnGbrjHJ0b1NZnIsc7SN\n3TZsuDN33jm7Y7fZGkPNtbHbTI5l5tpzM5fiGkPNfFxjqM4cHWOZubVN5nLco2EMZf/XocedypHs\nh8K49sgeu83WGIq5o+mxzGyMazdt2phXverl6e0dunzUpk2bsnv37rznPR+Y8FJDQLMO+XTxpZRj\nk/xZkg/UWv+kNe8zSVYleWat9d6Gcp3UVAdawNFtJnYaAUcvNQZomjoDNEmNAZrWdJMdOLodiWOZ\n4Sb7WJrsMDumcrr49yW5MUn7xYH/V5K/TfLe6UsNAAAAAAAAAOaGA13o5Yxa68+1z6i1DiZ5Synl\nX5tNCwAAAAAAAAC6z1QvVvTgtGYBAAAAAAAAAHPAgZrs3yulPG3szFLK/0yyqbmUAAAAAAAAAKA7\nHeh08a9L8nellJuSfCVJT5JzkzwtyY/PQG4AAAAAAAAA0FUmPZK91loz1FT/QZLLMtRY/16Ss2ut\n/zIj2QEAAAAAAABAFznQkeyptd5VSnl7kse0Zn2z1rqz+bQAAAAAAAAAoPsc6JrsKaW8McndSb6Q\n5JYkd5dS3jADeQEAAAAAAABA15m0yV5KeVmS/5nk/Frr8bXW5UnWJnl6KeWXZipBAAAAAAAAAOgW\nBzqS/ReTPKPW+h/DM2qt/5bkWUle1nRiAAAAAAAAANBtDtRkX1BrvWfszFrrxiQ9zaUEAAAAAAAA\nAN3pgE32UspxY2eWUlYlGWwuJQAAAAAAAADoTgdqsn84yadKKacMzyilPDrJZ5L8TtOJAQAAAAAA\nAEC3WTDZglrre0spy5P8RyllW2vdhUneXmv9cCd3XkrpSfKBJGcl2Znkilrrd9uWPy/Jq5PsTfKx\nWusHp/xIAAAAAAAAAKBhBzqSPbXWq5OsSnJZkqcmWV1rfVcp5YC3a/PMJH211rVJrkpy7Zjl1yT5\nkSTrkvxqKeWYQ8gdAAAAAAAAAGbUpEeyl1IWJXlBkntqrZ9um/+0DDXHH9fB/a9LcmOS1Fq/Ukp5\n4pjl30iyIvuv8e5a7wAAAAAAAAB0rUmb7Ek+nuShSY4ppRyf5C+SfCTJBUne1eH9L0tyf9v03lLK\nvFrrvtb0vyX5WpJtSf6s1rrlUJIHAAAAAAAAgJl0oCb7uUkenWRlkr9K8roMHZX+/Frrpg7vf0uS\ngbbpkQZ7KeWMJE/PUCP/gSR/VEp5dq31M5Pd2YoVi7NgwfwOQwMcOnUGaJIaAzRNnQGapMYATVJj\ngKbNlTrz4IMPTDh/5colWbVqYMJlwMw7UJP9vlrr3iQbSymnJHl5rfXPDvH+b8/Q9dw/XUo5P8kd\nbcvuT7I9ya5a62ApZWOGTh0/qc2btx9ieIAc0sBDnQEOlRoDNE2dAZqkxgBN67TOqDHAVByJY5l7\n7524yX7vvQ9k/vytM5wNMFmdOVCTvf366HdPocGeJDck+dFSyu2t6ReWUi5PsqTWen0p5cNJbiul\n7Eryf5P8/hRiAAAAAAAAAMCMOFCTvbd1BPu8JPNbf/cML6y1/tfB7rzWOpjkZWNmf6tt+YeSfOiQ\nMgYAAAAAAACAWXKgJvvSJLe2Tbf/PZjkEY1kBAAAAAAAAABdatIme631YTOYBwAAAAAAAAB0vUmb\n7KWUF4yZtS/J5iRfqrVubjQrAAAAAAAAAOhCBzpd/KVjpnuSHJ/ko6WUy2utf9dcWgAAAAAAAADQ\nfQ50uvgXTjS/lPKYJL+f5PyGcgIAAAAAAACArjTvUG9Qa/1mkkUN5AIAAAAAAAAAXe2Qm+yllPlJ\n5jeQCwAAAAAAABy1Fi5ceEjzgdkx6eniSykXTzB7eZKfT3JjYxkBAAAAAADAUWj58hVZvfrEbNhw\n18i8NWtOzPLlK2YxK2CsSZvsSd4yZnpfknuT/HWSWxvLCAAAAAAAAI5SV175mlx11auTJL29vXnl\nK18zyxkBY03aZK+1Xto+XUpZmOTZSV6a5N1JljabGgAAAAAAABxdTjnlIVmwYGH27t2TRz7y0Tnl\nlIfMdkrAGAc6kj1JUkp5eIYa67+QZEWS30jy082mBQAAAAAAAADd50DXZH9Wkl9Kck6SG5I8P8lH\naq1vnaHcAAAAAAAAAKCrHOhI9s8k+dMkF9Rav5MkpZR9M5IVAAAAAAAAAHShAzXZz8zQKeJvK6V8\nL8knD7I+AAAAAAAAABzR5k22oNb6r7XW1yQ5Kck7klyS5IRSyl+VUp42Q/kBAAAAAADAUamnp2e2\nUwAmcNAj02utDyb5bJLPllJWZeja7O9I8rmGcwMAAAAAAACArnJIp3+vtW5Kcm3rHwAAAAAAANCQ\nwcHB2U4BmMCkp4sHAAAAAAAAAEbTZAcAAAAAAACADmmyAwAAAAAAAECHDuma7IeqlNKT5ANJzkqy\nM8kVtdbvti0/N8lvtSY3JPm5WuvuJnMCAAAAAAAAgKlq+kj2Zybpq7WuTXJVkmvHLP9wkl+otV6c\n5MYkD204HwAAAAAAAJgTenp6ZjsFYAJNN9nXZah5nlrrV5I8cXhBKeXUJPckeXUp5ZYkK2ut3244\nHwAAAAAAAACYsqab7MuS3N82vbeUMhzzuCQXJHl/kqckeUop5ZKG8wEAAAAAAACAKWv0muxJtiQZ\naJueV2vd1/r7niTfqbV+K0lKKTdm6Ej3Wya7sxUrFmfBgvkNpQqgzgDNUmOApqkzQJPUGKBJagzQ\ntLlWZ4bPEr9w4fysWjVw4JWBGdd0k/32JJcl+XQp5fwkd7Qt+26SpaWUR9Rav5vkoiTXH+jONm/e\n3liiwJHrUAYg6gxwqNQYoGnqDNAkNQZoWqd1Ro0BpuJIHssMDg79v3v33mzatHV2k4Gj2GR1pukm\n+w1JfrSUcntr+oWllMuTLKm1Xl9KeXGST5ZSkuRLtdbPN5wPAAAAAAAAAExZo032WutgkpeNmf2t\ntuW3JDmvyRwAAAAAAAAAYLrMm+0EAAAAAAAAAGCu0GQHAAAAAAAAgA5psgMAAAAAAEAX6unpme0U\ngAlosgMAAAAAAABAhzTZAQAAAAAAAKBDmuwAAAAAAAAA0CFNdgAAAAAAAOhCg4ODs50CMAFNdgAA\nAAAAAADokCY7AAAAAAAAAHRowWwnAAAAAAAA0KQ//uNP5Ktf/XKjMZ70pAvysz/7AnFnIS6TO9pe\nC+KK21TssRzJDgAAAAAAAF1kYGBgtlMADqBncHBwtnPo2KZNW+dOskDXWLVqoKfTddUZ4FCpMUDT\n1BmgSWoM0LRO64waA0zFkTyWedvb3pRa/yOPfezpecMbrp7tdOCoNVmdcSQ7AAAAAAAAAHRIkx0A\nAAAAAAAAOqTJDgAAAAAAAAAd0mQHAAAAAACALjQ4OKcuJQ9HDU12AAAAAAAA6CI9PT2znQJwAJrs\nAAAAAAAAANAhTXYAAAAAAAAA6JAmOwAAAAAAAHQR12KH7ragyTsvpfQk+UCSs5LsTHJFrfW7E6z3\noST31Frf0GQ+AAAAAAAAMFe4Njt0p6aPZH9mkr5a69okVyW5duwKpZSXJjm94TwAAAAAAAAA4LA1\n3WRfl+TGJKm1fiXJE9sXllIuSHJukg81nAcAAAAAAAAAHLamm+zLktzfNr23lDIvSUopq5O8Ockr\nkjjXBQAAAAAAALRxbXboTo1ekz3JliQDbdPzaq37Wn8/J8mxST6XZE2SRaWUb9ZaPzHZna1YsTgL\nFsxvLFkAdQZokhoDNE2dAZqkxgBNUmOAps21OrNw4fyR/1etGjjI2sBMa7rJfnuSy5J8upRyfpI7\nhhfUWq9Lcl2SlFJ+Pkk5UIM9STZv3t5gqsCR6lAGIOoMcKjUGKBp6gzQJDUGaFqndUaNAabiSB7L\n7NnzYJJk79592bRp6yxnA0evyepM0032G5L8aCnl9tb0C0splydZUmu9vuHYAAAAAAAAADCtGm2y\n11oHk7xszOxvTbDex5vMAwAAAAAAAACmw7zZTgAAAAAAAAAYb3BwcLZTACagyQ4AAAAAAABdpKen\nZ7ZTAA5Akx0AAAAAAAC6iCPYobtpsgMAAAAAAEAXckQ7dCdNdgAAAAAAAADokCY7AAAAAAAAAHRI\nkx0AAAAAAAAAOqTJDgAAAAAAAF1ocHBwtlMAJqDJDgAAAAAAAF2op6dntlMAJqDJDgAAAAAAAAAd\n0mQHAAAAAAAAgA5psgMAAAAAAABAhzTZAQAAAAAAAKBDmuwAAAAAAADQhQYHB2c7BWACmuwAAAAA\nAAAA0CFNdgAAAAAAAOhCPT09s50CMAFNdgAAAAAAAADokCY7AAAAAAAAAHRIkx0AAAAAAAC60ODg\n4GynAExAkx0AAAAAAAC6iGuxQ3db0OSdl1J6knwgyVlJdia5otb63bbllye5MsmeJHfUWl/eZD4A\nAAAAAADQ7RzBDt2t6SPZn5mkr9a6NslVSa4dXlBK6U/y1iRPrrVelGR5KeWyhvMBAAAAAACAOcER\n7dCdmm6yr0tyY5LUWr+S5Ilty3YlWVtr3dWaXpCho90BAAAAAAAAoCs13WRfluT+tum9pZR5SVJr\nHay1bkqSUsovJ1lSa/2bhvMBAAAAAACAOcFp46E7NXpN9iRbkgy0Tc+rte4bnmhds/03kzw6yU8d\n7M5WrFicBQvmT3uSAMPUGaBJagzQNHUGaJIaAzRJjQGaNtfqTG/vUAtv4cL5WbVq4CBrAzOt6Sb7\n7UkuS/LpUsr5Se4Ys/zDSXbUWp/ZyZ1t3rx9mtMDjgaHMgBRZ4BDpcYATVNngCapMUDTOq0zagww\nFUfyWGbPngdH/t+0aessZwNHr8nqTNNN9huS/Ggp5fbW9AtLKZcnWZLka0lemOSLpZSbkwwmeV+t\n9bMN5wQAAAAAAAAAU9Jok73WOpjkZWNmf2um4gMAAAAAAMBc41rs0N3mzXYCAAAAAAAAwHg9PT2z\nnQIwAU12AAAAAAAAAOiQJjsAAAAAAAAAdEiTHQAAAAAAAAA6pMkOAAAAAAAAXWhwcHC2UwAmoMkO\nAAAAAAAAXaSnp2e2UwAOQJMdAAAAAAAAADqkyQ4AAAAAAAAAHdJkBwAAAAAAAIAOabIDAAAAAAAA\nQIc02QEAAAAAAKCLDA4OznYKwAFosgMAAAAAAEAXmTdvqIU3f/78Wc4EmIgmOwAAAAAAAHSRZzzj\n2Vm4cGF+8id/arZTASawYLYTAAAAAAAAAPY7/fQzc/31f+hIduhSjmQHAAAAAACALqPBDt1Lkx0A\nAAAAAAAAOqTJDgAAAAAAAAAd0mQHAAAAAAAAgA5psgMAAAAAAABAhzTZAQAAAAAAAKBDC5q881JK\nT5IPJDkryc4kV9Rav9u2/CeSvCnJniQfq7Ve32Q+AAAAAAAAAHA4mj6S/ZlJ+mqta5NcleTa4QWl\nlAWt6ackuSTJS0opqxrOBwAAAAAAAACmrOkm+7okNyZJrfUrSZ7Ytuy0JN+utW6pte5JcluSixvO\nBwAAAAAAAACmrOkm+7Ik97dN7y2lzJtk2dYkxzScDwAAAAAAAABMWaPXZE+yJclA2/S8Wuu+tmXL\n2pYNJLnvQHe2atVAz/SmBzCaOgM0SY0BmqbOAE1SY4AmqTFA09QZYDo1fST77UmeliSllPOT3NG2\n7D+SPKqUsryU0puhU8V/ueF8AAAAAAAAAGDKegYHBxu781JKT5IPJDmzNeuFSZ6QZEmt9fpSytOT\nvDlJT5Lfq7V+sLFkAAAAAAAAAOAwNdpkBwAAAAAAAIAjSdOniwcAAAAAAACAI4YmOwAAAAAAAAB0\nSJMdAAAAAAAAADq0YLYTmG6llJ4kH0hyVpKdSa6otX63bflPJHlTkj1JPlZrvX6mY5VSvpbk/tZq\n/1lrfXFTObTWWZzkC0leVGv91lRjHUrcUsrlSa7M0GO/o9b68hmK+ytJrkiysTXrpbXWb89A3Ocl\neXWSvRna1h883Jgdxn1+ktckuS/Jx2utH53pWNP5em6LdV6Sd9ZaLx0zf9rev4eRmxqjxqgxMxxv\nuutMN9eYVh7qjDqjzsxgLGMZNUaNUWOajnc0jWVmssYcTjx1ptG46swMxzKWMZZRY9SYpuMZyxy5\nY5nZqjGdxFZn5l6d6ZYa07rPGakzR+KR7M9M0ldrXZvkqiTXDi8opSxoTT8lySVJXlJKWTWTsUop\nfUlSa/2R1r/DfbFMmkMrjyck+fskjzjMOB3HLaX0J3lrkifXWi9KsryUclnTcVuekOT5bc/vYRe/\nDuNek+RHkqxL8qullGOajltKOTZDz/PFGXqNPa+U8pCZjNXA6zmllNcm+UiSvjHzp/v9O1VqTBs1\nRo1pOt50v6bnQI1J1Bl1Rp2ZsVjGMmqMGqPGNB3vKBzLzGSNmVI8daa5uC3qzAzGMpYxllFj1Jim\n4xnLHPFjmdmqMQeMrc7M2Toz6zWmFWvG6syR2GRfl+TGJKm1fiXJE9uWnZbk27XWLbXWPUluy9AG\nnclYZyVZUkq5qfz/7d1dqOR1Hcfxz1nNUFMSiigoJYRf0AM9K1JGdCHoEj1AERKRlW5P5E2lN0pG\nV+JFULGJIV2INz1CQReWkJWJLRSW9s0KIiTQHo2yBXG6+P+XczTbMztnfv8zM/t63eyZMzPn+9vd\nmTc/+P/Pf1q7YzybYi+Ot4YkOS3DC/vXe5xzInOPJrmoqo6Ot0/NcNZK77nJEMBrW2t3tdauWdLM\neeb+Isk5SU4fb88mmPviJD+vqn9U1SzJvUkunHjWsl/PSfLbJG9/mu8v+/27KI15Mo2ZZu4mNGbR\nect+Ta96YxKd0RmdmXKWvYzGaMw0czehMYvOO9n2MlM2ZtF5OtNvbqIz9jL92cs8mcZMM3cTGrPo\nPHuZbZu4l9mvxuw2W2fWszOr0Jhkws5s4kH2s7N9WYEkeby1duD/3PfPJHs5G2SRWf9KcmNVXZLk\nw0lu2/GcZa8hVXV3VT2UZGsPM05oblXNquqRJGmtfTzJmVV1R++5o9uTHEry5iRvaK1dOtHcXyU5\nkuS+JN+pqkcnmPtgkpeOZ6+dkeQtSc6ceNayX8+pqm9muCTKbuvb6/t3URqjMRoz7bylvqbXoDFP\ntxad0Zkp5m5CZ/a9McladEZjNEZjpp13su1lpmzMovN0ptPckc5MO8texl5GY6aZuwmNWXSevcxm\n72X2qzHHna0za9uZfW9MMm1nNvEg+6NJztpx+0BVPbHjvrN33HdWhmv/TznrwSS3JUkNl5n4S5Ln\nd1pDT8ed21rbaq3dmOGN8o6p5ib5fFX9taoeT/LdJK/qPbe19vIklyU5N8l5SZ7XWntn77lV9fcM\nn9Hx9QyvqSNJ/jzxrGW/nndb3zLfv3tZh8b0pzGb15hF503VmVVpzLG16Ex/OrN5nVnlxhxb3yp0\nRmM0RmOmnXey7WWmbMyi83Sm49zojL1Mf/YyGqMx086zl9nsvcx+NWbX2Tqzlp1Z5cYcW99S38Ob\neJD9x0kuTZLW2oUZzvo45oEk57fWnt1aOy3DZQDunmjWG8dZVyS5aXzOCzL8J/6p0xp62m3uzRk+\ne+FttX1Jj65zW2tnJ/lla+2M1tpWhs+vONJ7boYzX/6d5GgNl7l4OMNlPbrOba2dkuTVVXVxkncn\necn4+ClnLfv1vNNTz45b9vt3URozDY3ZtimNWXRer86samMSndEZnZlylr2MxvSiMds2pTGLzjvZ\n9jJTNuZE5+lM57k6Yy8zEXuZaWjMtk1pzKLz7GW2beJeZr8aM89snek8115m7+/hrdlsWZf1Xw3j\nC/9LSV4xfuv9GT5D4cyquqW1dlmS6zP8436lqg5POau19owkt2Y4I+WJJJ+uqp/2WsOOx/0gyaGq\n+s2is+admyE69ya5a7xvluHsn2/3nDv+m1+e5BMZPp/j+1X1mb3OnHPuVRlicDTJ75J8aDzTqffc\n6zJ8JspjSW6qqm9MOWvZr+cdazk3ye1VdVFr7T3p8P7dw9o0RmM0ZsJ5PTqzyo0Z16czOqMzE82y\nl0miMccepzF95659Yxadd7LtZaZszKLzdKbfXJ2xl5mCvYzGRGMmnWcvs9l7mf1qzG6zozNr2ZlV\nacy4lkk6s3EH2QEAAAAAAACgl028XDwAAAAAAAAAdOEgOwAAAAAAAADMyUF2AAAAAAAAAJiTg+wA\nAAAAAAAAMCcH2QEAAAAAAABgTg6yAwAAAAAAAMCcHGRn37XW3tRau3PH7Staa7cu8ecfbK1dPX59\nVWvtymX9bGA96AzQk8YAPWkM0JvOAD1pDNCbzrBfTt3vBcBo1lo7LckNST6S5GtL/NmvSTJLkqr6\n8hJ/LrBedAboSWOAnjQG6E1ngJ40BuhNZ5icg+yskovHPz+Z5ILdHtxauz7JhUlemOQLSe5P8rkk\npyc5J8mnxu8dyhDYPyQ5L8msqm5orR1M8tkkW0l+n+SqqnpkmX8hYOXoDNCTxgA9aQzQm84APWkM\n0JvOMCmXi2dlVNUdVXVNkv+cwNOeWVUvq6rDST6W5ANV9dokH0xyXVU9kORwksNV9dVjT2qtPXf8\n/lur6pVJfpLki8v6uwCrSWeAnjQG6EljgN50BuhJY4DedIap+U121t09O75+b5KDrbV3ZTj76FnH\ned7rk9xTVX8cb9+c5No+SwTWnM4APWkM0JPGAL3pDNCTxgC96QwL85vsrLvHdnz9oySvS/KzDJf0\n2DrO8w485f4DSU5Z+uqATaAzQE8aA/SkMUBvOgP0pDFAbzrDwhxkZyO01s5Jcn6Gy3d8L8kl2Q7a\n4/nfqzbck+SC1tqLxttXJrlzirUC60lngJ40BuhJY4DedAboSWOA3nSGRTjIzkaoqr8luSXJ/a21\nI0mek+SM1trpSX6Y5PLW2keTzMbHP5whet9qrd2X5OIkh/Zl8cBa0BmgJ40BetIYoDedAXrSGKA3\nnWERW7PZbL/XAAAAAAAAAABr4amXN4CV0lq7Osn7Mp4dNNpK8lBVHdyfVQGbRGeAnjQG6EljgN50\nBuhJY4DedIae/CY7AAAAAAAAAMzJZ7IDAAAAAAAAwJwcZAcAAAAAAACAOTnIDgAAAAAAAABzcpAd\nAAAAAAAAAObkIDsAAAAAAAAAzMlBdgAAAAAAAACY038Beqq0tVHFOeYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Cross-validated performance distribution\n", + "facet_grid = sns.factorplot(x='l1_ratio', y='score', col='alpha',\n", + " data=cv_score_df, kind='violin', size=4, aspect=1)\n", + "facet_grid.set_ylabels('AUROC');" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAFgCAYAAAAPYvhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8zvX/+PHHNcrFMKlkZIZ4Fj6bQw7RN/Uhnyy+lopv\nMrE5tFkUfRWZ00bZVI45fByKDp/6yFJSfesniRCSJL1GCat8Ogjtmlns+v3xvqwtO1y75s2u7Xl3\ne9+29+F1vZ/PZK+9Xu/X+/VyuN1ulFJKKeWbgEsdgFJKKeXPtCJVSimlSkErUqWUUqoUtCJVSiml\nSkErUqWUUqoUtCJVSimlSqHypQ6gMGENu+h7OUopVUZ8cegjh12fXZqf93bG5S1tkSqllFKlUGZb\npEoppSoGh+OSNypLRStSpZRSl5TD4d+do/4dvVJKKXWJaYtUKaXUJRWAdu0qpZRSPvP3Z6TatauU\nUkqVgrZIlVJKXVIBfj7YSCtSpZRSl5R27SqllFIVmLZIlVJKXVIOHbVbOBG5GrgFCAKOA1uMMT/a\neU+llFL+xd+fkdoWvYgMAd4GOgMNgZuBt0TkQTvuV/myyjw5ewIrU59jwQvJNGhYP/dcRO9urFg9\nv8By0bH9WbF6Pi+/uYje9/YAoNMt7XjpjQWkzJ+ce93jU0ZRt14dO0I/j+aiudhNc9Fc1IVj568B\ng4HOxpjRxphJxpjRQCcgxo6b3X1fT1wZmUTdFcdTk+cwfuooAK5v0ZTIvj0KLNO2QzjhbVowsM8I\nYvqNom6w9T9Yv6hIhg0Yw8//+YVmNzShqTQm4/cMjv7wkx2hay6ai+aiuZS7XErC4XD4vJUFdlak\nlwFV/3KsGmDL8mhNmoayacM2AA4dTCe0SQg1g2oQ/2gMMybPLbBM51vacyDtILMWJzFn6XQ2rv8E\nAJcrE2dVJ1WcVcg6lUV0XH+WLXjZjrA1F81Fc9FcymUuJRHgcPi8lQV2VqSJwE4RWScir4jI28A2\nYIodNzN7D9ClaycAwlo3J7j+NSQ9PY6ZifM5dSqrwN9catUOonnLZoyJnUTSE8/w1OwEABbPXcnY\nhHi+P/IjIaHXsmv7HiJ6d+OJpEcIa93cjvA1F81Fc9FcylUuFYltFakx5i3gBuAxYB7wONDCGPO2\nHfdLfW0dLlcmy1+bw623d8btdlO/QTATpo1mxtyJNGoSwqMJI/KVOf7bCTZv3M7Zs2c5dDCd06ez\nqXVFEN99c5jHRk5l+cJXiOwbwbo1H9CpS3umJ8xi2MiBdoSvuWgumovmUq5yKQkHAT5vZYGto3aN\nMWeAPXmPicgQY8ySC32vluHXs23zTmYmzueGls2od21dHh+ZCEBw/WuYMXciMxPzP6jftWMP/Qfd\nzYtL/83Vda7EWdXJ8d9O5J6/p38v1qx6x+qL9wzPdlZ1XujQNRfNRXPRXMpdLiVRVp51+uqivEcq\nIgHGmBzPrsuOexw6mE7ymEkMjY/i5InfmTQ2udBrk54ex9yUJXy8fitt2oXx0pqFOBwOpk14Nvea\naoFVubFDKx4bORWAX385xguvz+PVlW/YEb7morloLppLucqlInG43baM/UFEGgPPADcCZ7C6kfcA\njxhj0oorH9awiz2BKaWUKrEvDn1kW7Px1hsiff55v2HfG5e8OWtni3QJMM4Ys+3cARHpCCzHerdU\nKaWU8vuZjex8UuvMW4kCGGO22ng/pZRS6qKzs0W6W0SWAe8CJ4AaQATwhY33VEop5Wf8fYpAOyvS\nOCASa2rAmsBJYC2QauM9lVJK+RkdtVsIY4wbq9LUilMppVS5pcuoKaWUuqTKylR/vtKKVCml1CWl\no3aVUkqpCkxbpEoppS4pHbWrlFJKlYK/j9r1718DlFJKqUtMW6RKKaUuKR21q5RSSpWCv4/a1YpU\nKaVsMrjd7Zc6BHURaEWqlFLqkvL3wUZakSqllLqk/P0ZqY7aVUoppUpBW6RKKaUuKR1spJRSSpWC\nv89s5N/RK6WUUpeYtkiVUkpdUnaN2hURB/AcEA5kAUOMMd/mOX8/MBo4Ayw3xiwUkcrAC0Co5/hQ\nY0xaUffRFqlSSqlLKsDh8HkrRiRQxRjTCRgHPPOX8ynA34GbgTEiEgREAJWMMZ2BRGB6sfGXMF+f\niEiAiNQXEa24lVJKXSw3A+8CGGO2ATf+5fxu4AqgqmffDaQBlT2t2SAgu7ib2FaxichSz9cOnsBW\nA1+KSEe77qmUUsr/OErxpxg1gRN59s/8pUG3F9gJ7AHWGmNOAhlAI+BrYBEwp7ib2NlCbOT5Og3o\nYYzpAHQDZth4T6WUUn7Gxq7dk0CNvLcyxuQAiMjfgDuBhljPQ68RkXuAR4B3jTGC9Wx1hYhcXmT8\nPmVdMmeNMfsBjDE/XKR7KqWUUpuxnnni6Q3dk+fcCSATOG2McQM/AbWAY/zZij2ONSi3UlE3sbNS\nCxKRnUBDEYkREaeIzAcO2XGzypdV5snZE1iZ+hwLXkimQcP6ueciendjxer5BZaLju3PitXzefnN\nRfS+twcAnW5px0tvLCBl/uTc6x6fMoq69erYEfp5NBfNxW6aS9nMpXmXMO6ZPIC7Jw2g37RBxL/0\nGFc3uob/eXIw906J4tbB3c8r4whwcMeoSPolPcC9U6KoFVwbgIbhjfmfJwdz5+g+udfeGv0PalxV\n86LkUhIOh8PnrRipwGkR2Qw8DTwiIveJyBBjzGFgMbBJRDZiPQ99HpgFtPUc+wAYZ4w5VdRNbHv9\nxRjTVkSqYDWNXUAO1m8DS+2439339cSVkUnUXXE0bHQt46eOIvaBsVzfoimRfXsUWKZth3DC27Rg\nYJ8RVK3qZODQfgD0i4pk2IAxjBgdTbMbmuDOcZPxewZHf/jJjtA1F81Fc9FcAPjqoy/46qMvALgt\n5h/sXf853YbfyYdL3+Xo/h+4qV8X5OYWmE17c8s0anMdAQEOXp3wAiF/a8TN/W9j7dOvE35HW1ZP\nfYmb+nXhqoZ1cLvdZGee5vdfTl6UXErCrrl2PS3N2L8cTstzfhHWc9C8zgD9SnIfu7tZawINgA5A\nT2CNMeYPO27UpGkomzZsA+DQwXRCm4RQM6gG8Y/GMGPy3ALLdL6lPQfSDjJrcRJzlk5n4/pPAHC5\nMnFWdVLFWYWsU1lEx/Vn2YKX7Qhbc9FcNBfN5TzXNAmm9rVX8+X/+5waV9bg6P4fAPjBHKH+9Q3y\nXfvbD8cICLB+lF9erQpnz5wFIPtUNpWrXEblyy/jzOk/aHdXZ7a/8cnFTaSCsHPU7hDgbaAz1sPc\nm4E3ReRBO+5n9h6gS9dOAIS1bk5w/WtIenocMxPnc+pUVoFdALVqB9G8ZTPGxE4i6YlneGp2AgCL\n565kbEI83x/5kZDQa9m1fQ8RvbvxRNIjhLVubkf4movmorloLrna3dWJra9tBOD40ePUv8GqPBvf\n2IzLnPnHvfyRlU3NOrV4YHYs3YZHsGvddgC2rdpEl0HdOfnTcWoF1+aHfYe5/r9a8vchd1C3aX3K\nEhtH7V4UdrZIBwOdjTGjjTGTjDGjsSrVGDtulvraOlyuTJa/Nodbb++M2+2mfoNgJkwbzYy5E2nU\nJIRHE0bkK3P8txNs3rids2fPcuhgOqdPZ1PriiC+++Ywj42cyvKFrxDZN4J1az6gU5f2TE+YxbCR\nA+0IX3PRXDQXzQWwWpVXBF/J9/sOA/B/z71Fuz6d6ZPQn8zjLk6dzMx3fZueHfju8294YdQCVj76\nT+546L8JqBzAbz/8yjuzUtm+5hNa/D2crzftpWGrxqxf+i4d7rn5ouTiLRtH7V4Udk4ReBnWS655\nu3KrYb3wesG1DL+ebZt3MjNxPje0bEa9a+vy+MhEAILrX8OMuROZmZh/0MGuHXvoP+huXlz6b66u\ncyXOqk6O//bnK0f39O/FmlXvWA+1Pb/5OKs67Qhfc9FcNBfNBYBrbwjh8J6DufuN2l7HO7Pe4LQr\ni1uju3PwswP5rs/KOEXO2RwATruyCKgUgCMgAGtYCoTd3oavPvwCB+S23y6rctlFyKTisLMiTQR2\nish+rKHENYHrsOY1vOAOHUwnecwkhsZHcfLE70wam1zotUlPj2NuyhI+Xr+VNu3CeGnNQhwOB9Mm\nPJt7TbXAqtzYoRWPjZwKwK+/HOOF1+fx6so37Ahfc9FcNBfNBYAr6l/JiZ+O5+4f//EY90wewB9Z\nf3Bk73cc+tyaKvYf8f/N5pc/5LO3P6V7XE/unTqQgEoBbHrpQ85mnwHgMufl1G/ekHdmpQKQecJF\nv6QH2P3uzouSi7fsmmv3YnG43bY0EAHwTP57A1YlehLYZ4w5403ZsIZd7AtMKaUugsHtbr/UIVww\nj6yaYFttF90pzuef98s+ee6S18K2rv7iqTTzvgCL5/2dJXbeVymllP8oK4OGfHXRJq3Ps+u6GPdU\nSimlLgbbWqQi0hhryZob+XOi4D1Y8xgqpZRSgH0TMlwsdnbtLsGaWmnbuQOeuQ6XY70Go5RSSvk9\nO7t2nXkrUQBjzFYb76eUUsoP2TjX7kVhZ4t0t4gsw1pU9QTWUjYRwBc23lMppZSf0a7dwsUBkVhT\nA557/WUt1mz8SimlFOD/75EWW5GKSHXgNqAp1lQZB4APjDFZRZXzzLqfilacSimlyrFCK1IRqQZM\nAvpgdccewprurxPwrIisBhKNMRkXI1CllFLlk7+/R1pUi/RFrEVPxxljcvKe8LzK0tNzTaR94Sml\nlFJlW1EV6d2e7tnzeCrWN0XkLXvCUkopVVEE+HeDtPCK9Fwl6uninQz83XP9h8AEY4yrsIpWKaWU\n8pa/Dzby5j3SeVjLn0UDD2Atj7bQzqCUUkpVHBVhPdK2xpjwPPvxIvKVXQEppZRS/sSbijRARGoZ\nY44DiEgtwKul0JRSqiIbsSz2UofgF/y9a9ebivQZYLuIvIm1wHov4Elbo1JKKaX8RLEVqTFmuYhs\nB7pgPVPtY4zZU0wxpZRSyisBfv4eaaGDjUSkp+frQKAN8DvWnLmtPceUUkqpUivPk9a3w5ob97YC\nzrmBFbZEpJRSqkIpK6NvfVXUe6STPN++bIx5P+85Eelja1RKKaWUnyhqrt1+QBVgqohM/EuZ8cBq\nm2NTSilVAfh5g7TIrt2aWBPU1yB/9+4Z4Ak7g1JKKaX8RVFdu/8E/ikiXY0x/+8ixqSUUqoCKbfP\nSPM4LSJrgOpY75FWAhoaY0LtDEwppVTF4O/LqHkz1+4S4A2sSnc+sB9drFsppdQF4u+vv3hTkZ4y\nxiwHNgC/AUOxJmdQSimlKjxvKtIsEakNGKCjZ+m0wOIKiUizwrbSBl2QypdV5snZE1iZ+hwLXkim\nQcP6ueciendjxer5BZaLju3PitXzefnNRfS+twcAnW5px0tvLCBl/uTc6x6fMoq69erYEfp5NBfN\nxW6aS9nMBaBv1GBiYuOJiY1nYuJ0jqSn88DQWAYNiyNpxszzrne73SQ+lcKA6GHExMZzJP17ADZv\n2Ur/QUMYM25C7rXTU57hx6NHL1ou3vL31V+8qUifBl4F3gIGisheYIcX5ZZhtWIXAovybLYswXb3\nfT1xZWQSdVccT02ew/ipowC4vkVTIvv2KLBM2w7hhLdpwcA+I4jpN4q6wdY/ln5RkQwbMIaf//ML\nzW5oQlNpTMbvGRz94Sc7QtdcNBfNRXMBIDs7G4ClC+axdME8piaMJ/nZOYyMG87zi5/D7Xaz/qON\n+cqs37CR7OxsXly2mFEjYkmZNQeAf61azeJ5s6lz1VWYtP2kHfiG6tUDCa5b96LkUhIOh+9bWeBV\n1y7Q3RjzO9AWGABEeVGuO/A9EGWMuS3P9nffwy1ck6ahbNqwDYBDB9MJbRJCzaAaxD8aw4zJcwss\n0/mW9hxIO8isxUnMWTqdjes/AcDlysRZ1UkVZxWyTmURHdefZQtetiNszUVz0Vw0l1xm/wFOnTrF\n8IceZkjcSL74ci/7vk6jbetWANx8U0e2fpq/HfPZ57vpfFNHAMJatuCrfQaAwGrVyMrKIuv0aZxO\nJ0ufX0nMwAEXLZeKxJtRu8nGmLcBjDEuYJc3H2yMyRSRB4EQrArVVmbvAbp07cSG9zcT1ro5wfWv\nIenpccxMnE929h8FPpSuVTuI4Hp1iI8ex7UhwcxZMp3eXQeyeO5KxibEY/YdICT0WnZt30NE725I\n8+t46/X3+GKXvcuxai6ai+ZSMXNxVqnC4Kj76dO7F4cOHyF21GjcuHPPBwZWIyMjI18Zl8tFjep/\nPm2rVCmAnJwchsUMIvnZ2TRreh2Hj6TTplUYb7/3Pmlp++l1Zw/C/9bS1lxKoqx00frKmxbpNyKy\nTESGi8jAc5s3H26M2WmM2VLKGL2S+to6XK5Mlr82h1tv74zb7aZ+g2AmTBvNjLkTadQkhEcTRuQr\nc/y3E2zeuJ2zZ89y6GA6p09nU+uKIL775jCPjZzK8oWvENk3gnVrPqBTl/ZMT5jFsJH2z9evuWgu\nmkvFzCW0YQh33tEdgIYhDagVFMSxX4/lnne5MqlRo3q+MoGBgbgyM3P3c3LcBAQE0Dg0lORpU4ke\nOIDUt9YScUd3PtmyjfFjx7Bo6XLbcykJRyn+lAXeVKS/Yr0/2hFrhqPbgFt9vaGIDPG1bFFahl/P\nts07Gdx3JO+v+4j31n7I3f8YzJD7HmFs/BS+PXCImYn5Bx3s2rGHzl3aA3B1nStxVnVy/LcTuefv\n6d+LNavesYZZe/7CnFWddoSvuWgumovmQuqba0mZZXVH//Tzz2S4XNzUsT3bd1odgZu2bKVNq1b5\nyrQOD+PjzVZ7ZfeeL2l6XeN851elriGyZwRutzu3dZuVddruVCoUb9YjHVzYORFZbIwZVtxniEiA\nMSbHs+sqQXxeO3QwneQxkxgaH8XJE78zaWxyodcmPT2OuSlL+Hj9Vtq0C+OlNQtxOBxMm/Bs7jXV\nAqtyY4dWPDZyKgC//nKMF16fx6sr37AjfM1Fc9FcNBfu6t2LhClJPDA0FofDQdKkCdQKCmJS0pOc\nOXOGxo1C6d7VmrH1icmJPBQ7nK63dWHLp9uJihkOQOLEP2dwdblc7PhsF8nTrFyurF2bgUMepN89\nZWvdEX/v2nW43e7iryqEiHxmjGlTyLnGwDPAjVjz8wYAe4BHjDFpxX12WMMuvgemlFJlwI495Wdt\nj8trXmlbbZfYM8Hnn/cJaxMveS3szWAjXy0Bxhljtp07ICIdgeVAZxvvq5RSSl003jwj9ZUzbyUK\nYIzZauP9lFJK+SF/nyLQzhbpbhFZBrwLnMBaji0C+MLGeyqllPIz/v6MtLQVaVHZxwGRwM1Ya5ue\nBNaiE94rpZQqR0pbkb5f2AnPnLypaMWplFKqCH7eIC1dRWqMGXuhAlFKKVUxlduuXRGZWFRBY8zU\nCx+OUkop5V+KapFWBkZjrf6SU8R1SimllM/smupPRBzAc0A4kAUMMcZ8m+f8/Vj13BlguTFmYXFl\nClJoRWqMmSgi9QCXMabwqUKUUkqpUrDxNZZIoIoxppOIdMCaJCgyz/kU4AYgE/hKRF4B/l5MmfMU\n9x7paOBHHxNQSimlLqWbsV7BxDOvwY1/Ob8buAKo6tl3e1HmPEVWpMaYk8aYlSUKWymllCqBAIfv\nWzFqYs1jcM4ZEclb7+0FdmJNX7vWGHPSizLnKWqw0XKg0PkPjTHRRX2wUkop5Q0bu3ZPYk0GdE7u\nAioi8jfgTqAh1mIqL4nIPfw5gdB5ZQpT1GCjDT4ErZRSSpUVm4GewCrPXO978pw7gfVs9LQxxi0i\nPwG1PGX+u5AyBSqqIv3cGLO7qMIiEl7cNUoppVRRbGyRpgK3i8hmz/5gEbkPCDTGLBGRxcAmETkN\nfAM8D5wFuuctU9xNiqpI7xeRMcCLwMfGmFMAIlINuAWIBg5jPaxVSimlfOLFs06feGbYi/3L4bQ8\n5xcBiwoo+tcyRSrq9ZexIhIGjAFeERE3f64r+g6QZIzRCeiVUkpVaEVOEeipKB8AEJGrgBxjzLGL\nEZhSSqmKoawsh+Yrr+faNcb8YmcgSimlKiY/r0dtXdhbKaWUKveKrUg9z0mVUkopWwQ4HD5vZYE3\nLdJXbY9CKaVUheUoxZ+ywJtnpF95llTbBpw6d9AYs9G2qJRSSik/4U1FWhu4zbOd48aaIV8ppZQq\nlTLSQ+uzYitSY8xtxV2jlFJK+aqsPOv0VbEVqYg0BJYAocB/AS8D0caY72yNTCmllPID3gw2WoS1\n+GkG8B/gFWCFnUEppZSqOBwOh89bWeBNRXqVMeb/wJq30BjzT6z12oolIj1FpNtfjvUueZjFq3xZ\nZZ6cPYGVqc+x4IVkGjSsn3suonc3VqyeX2C56Nj+rFg9n5ffXETve3sA0OmWdrz0xgJS5k/Ove7x\nKaOoW6+OHaGfR3PRXOymuZTNXAD6Rg0mJjaemNh4JiZO50h6Og8MjWXQsDiSZsw873q3203iUykM\niB5GTGw8R9K/B2Dzlq30HzSEMeMm5F47PeUZfjx69KLl4i2Hw/etLPCmIj0lItfiWZtURG4GThdX\nSESeA/oDw0TkbRGp4jk1ytdgi3L3fT1xZWQSdVccT02ew/ip1m2ub9GUyL49CizTtkM44W1aMLDP\nCGL6jaJusPWPpV9UJMMGjOHn//xCsxua0FQak/F7Bkd/+MmO0DUXzUVz0VwAyM7OBmDpgnksXTCP\nqQnjSX52DiPjhvP84udwu92s/yj/CxPrN2wkOzubF5ctZtSIWFJmzQHgX6tWs3jebOpcdRUmbT9p\nB76hevVAguvWvSi5VCTeVKSjgbVAUxH5HOsZ6Ugvyv3NGNPfGNMXeJc/30e15XeIJk1D2bRhGwCH\nDqYT2iSEmkE1iH80hhmT5xZYpvMt7TmQdpBZi5OYs3Q6G9d/AoDLlYmzqpMqzipkncoiOq4/yxa8\nbEfYmovmorloLrnM/gOcOnWK4Q89zJC4kXzx5V72fZ1G29atALj5po5s/XRHvjKffb6bzjd1BCCs\nZQu+2mcACKxWjaysLLJOn8bpdLL0+ZXEDBxw0XIpiYrQtXsAaAd0BAYC1wHe9A1cdq4VaoyZC+wX\nkTm+Blocs/cAXbp2AiCsdXOC619D0tPjmJk4n1Onsgr8D16rdhDNWzZjTOwkkp54hqdmJwCweO5K\nxibE8/2RHwkJvZZd2/cQ0bsbTyQ9Qljr5naloLloLppLBc/FWaUKg6PuZ9HcWSQ8/r88njAZt9UZ\nCEBgYDUyMjLylXG5XNSoHpi7X6lSADk5OQyLGUTys7OpXy+Yw0fSadMqjLffe5+kp1LYvedL23Mp\niQCH71tZUGhFKiINRCQE+BioC/wOHAeuBd7z4rNnA1+KyNWe/bFAVayRvxdc6mvrcLkyWf7aHG69\nvTNut5v6DYKZMG00M+ZOpFGTEB5NGJGvzPHfTrB543bOnj3LoYPpnD6dTa0rgvjum8M8NnIqyxe+\nQmTfCNat+YBOXdozPWEWw0YOtCN8zUVz0Vw0F0IbhnDnHd0BaBjSgFpBQRz79c8Ft1yuTGrUqJ6v\nTGBgIK7MzNz9nBw3AQEBNA4NJXnaVKIHDiD1rbVE3NGdT7ZsY/zYMSxautz2XCqSolqkU4CPgKbA\nRs/3H2FVou8U98HGmFeAvwG/ePbdxpihWK3bC65l+PVs27yTwX1H8v66j3hv7Yfc/Y/BDLnvEcbG\nT+HbA4eYmZh/0MGuHXvo3KU9AFfXuRJnVSfHfzuRe/6e/r1Ys+odqwvB0yPtrOq0I3zNRXPRXDQX\nUt9cS8osqzv6p59/JsPl4qaO7dm+cxcAm7ZspU2rVvnKtA4P4+PNWwDYvedLml7XON/5ValriOwZ\ngdvtzm3dZmUVO8zlovL3rt2iFvaOBhCRx4wxM3z5cGNMVgGH2wK7fPm8ohw6mE7ymEkMjY/i5Inf\nmTQ2udBrk54ex9yUJXy8fitt2oXx0pqFOBwOpk14NveaaoFVubFDKx4bORWAX385xguvz+PVlW9c\n6NA1F81Fc9FcALirdy8SpiTxwNBYHA4HSZMmUCsoiElJT3LmzBkaNwqle1drjpwnJifyUOxwut7W\nhS2fbicqZjgAiROfyP08l8vFjs92kTzNyuXK2rUZOORB+t3Tx/ZcSqKM1Ic+c7jd7iIv8DznHAMI\n8BDwMPCUMSbb25uISIAxJsfz/X2e1mqRwhp2KTowpZQq43bsWX2pQ7hgLq95pW3V3fODUnz+eT/o\n+f+95NWwN3PtzgN+xmpJnsEabLQUiCqqkIg0Bp4BbgTOiEgAsAd4pDQBK6WUKl/8fYpAb0bttjXG\njAf+MMZkAg8Arb0otwR40hhzrTEm1BgTAiQC+pRbKaVULn9/RupNReoWkcshdwz2VXm+L4rTGLMt\n7wFjzNYSxqeUUkqVad507c4CPgDqisgs4C6sEb3F2S0iy7AmYzgB1AAigC98jFUppVQ5VEYalj7z\nZhm1lSKyE2s90kpAL2OMN5VhHBAJ3Iw1N+9JrBmSUn0PVymlVHlTVrpofeXNMmqXA02wJmQAaCUi\nrYwxRa4AY4xxY1WaWnEqpZQqt7zp2n0Ha37cQ3mOudGl1JRSSl0Aft4g9aoivcoYE257JEoppSqk\nivD6y3oR6eZ5D1QppZRSeXjTIj0M/B/WazBgdfO6jTGV7AxMKaVUxeDnDVKvKtJRQKgx5rDdwSil\nlKp4/H3Urjfdtd8Dv9odiFJKKeWPvGmRfo+1ruhmIHei+nOrwyillFKl4ecNUq8q0rc9m1JKKXXB\n+XvXrjczG70gIrWBQKyBRpWARnYHppRSSvkDb2Y2mg6MAC4DfgHqAzuADvaGppRSqiLw8wapV4ON\n7gMaAK9izbfbDWt9UqWUUqrUAhwOn7eywJuK9EdjzEngSyDcGPMhcI29YSmllFL+wZvBRidEJArY\nCTwkIj8AV9gbllJKqYqijDQsfeZNizQGqGOM2QB8BywCJtgYk1JKqQrE4XD4vJUF3rRIpxljBgMY\nY8bYHI9SSinlV7xpkbYUkeq2R6KUUqpCcjh838oCb1qkOcBhETHAqXMHjTF/ty0qpZRSFUZZ6aL1\nlTcV6VhabfJPAAAgAElEQVTbo1BKKaX8VLFdu8aYj4CTWC1Tt6dME5vjUkopVUGU+65dEXkB6ATU\nBvYBrYDNwDJ7Q1NKKVUR+HvXrjeDjW4BmgP/BoZhTQ14eXGFRKRpnu8jROQJEbnD10CLU/myyjw5\newIrU59jwQvJNGhYP/dcRO9urFg9v8By0bH9WbF6Pi+/uYje9/YAoNMt7XjpjQWkzJ+ce93jU0ZR\nt14du8LPR3PRXOymuZTNXAD6Rg0mJjaemNh4JiZO50h6Og8MjWXQsDiSZsw873q3203iUykMiB5G\nTGw8R9K/B2Dzlq30HzSEMeP+fFtxesoz/Hj06EXLpaLwpiL9wRjzB1ZrNMwYsxeo4UW5RQAi8jgQ\nBxwDYkRkkq/BFuXu+3riysgk6q44npo8h/FTRwFwfYumRPbtUWCZth3CCW/TgoF9RhDTbxR1g61/\nLP2iIhk2YAw//+cXmt3QhKbSmIzfMzj6w092hK65aC6ai+YCQHa2tVLl0gXzWLpgHlMTxpP87BxG\nxg3n+cXP4Xa7Wf/Rxnxl1m/YSHZ2Ni8uW8yoEbGkzJoDwL9WrWbxvNnUueoqTNp+0g58Q/XqgQTX\nrXtRcikJf+/a9WphbxEZB3wCDBeR/wFK8jrMnUCkMWYB0BfoWvIwi9ekaSibNmwD4NDBdEKbhFAz\nqAbxj8YwY/LcAst0vqU9B9IOMmtxEnOWTmfj+k8AcLkycVZ1UsVZhaxTWUTH9WfZgpftCFtz0Vw0\nF80ll9l/gFOnTjH8oYcZEjeSL77cy76v02jbuhUAN9/Uka2f7shX5rPPd9P5po4AhLVswVf7DACB\n1aqRlZVF1unTOJ1Olj6/kpiBAy5aLiVh14QMIuIQkQUi8omIrBeRxnnOXSMiH3qOfygiv4nIMBGp\nLCIrRGSjiGwVkV7Fxe/tzEYHjTHbgdexJrGP9aJcHRFpDfwI1PQcqwo4vShbYmbvAbp07QRAWOvm\nBNe/hqSnxzEzcT6nTmUV+B+8Vu0gmrdsxpjYSSQ98QxPzU4AYPHclYxNiOf7Iz8SEnotu7bvIaJ3\nN55IeoSw1s3tCF9z0Vw0F80FZ5UqDI66n0VzZ5Hw+P/yeMJk3LhzzwcGViMjIyNfGZfLRY3qgbn7\nlSoFkJOTw7CYQSQ/O5v69YI5fCSdNq3CePu990l6KoXde760PZcyIhKoYozpBIwDnjl3whjzH2PM\nbZ5XOcdhTYP7T2AA8Isx5hagBzCvuJt4M2r3d+BrERntuf4xz8T1xVkCjAZaAiNEpCbwNTDbi7Il\nlvraOlyuTJa/Nodbb++M2+2mfoNgJkwbzYy5E2nUJIRHE0bkK3P8txNs3rids2fPcuhgOqdPZ1Pr\niiC+++Ywj42cyvKFrxDZN4J1az6gU5f2TE+YxbCRA+0IX3PRXDQXzYXQhiHceUd3ABqGNKBWUBDH\nfj2We97lyqRGjfwdgoGBgbgyM3P3c3LcBAQE0Dg0lORpU4keOIDUt9YScUd3PtmyjfFjx7Bo6XLb\ncykJG7t2bwbeBTDGbANuLOS6ucCDxhg38BqQ4DkeAPxR3E28GbX7KDAceNPzoW+JyHRjTJF/E8aY\nWQV8VkvPSjIXXMvw69m2eSczE+dzQ8tm1Lu2Lo+PTAQguP41zJg7kZmJ+Qcd7Nqxh/6D7ubFpf/m\n6jpX4qzq5PhvJ3LP39O/F2tWvWN1IWD9jTmr2tKg1lw0F81FcyH1zbWkHfiGCY89yk8//0yGy8VN\nHduzfecu2rVtzaYtW2l/Y9t8ZVqHh/HRps107/p3du/5kqbXNc53flXqGiJ7RuB2u3Nbt1lZp23P\npSRsXA6tJnAiz/4ZEQkwxuScO+Dpuv3SGHMAwBiT6TleA2uQ7RPF3cSbCRmGAW3PVYAiMhXr9ZcS\n/0pjjDkpIkOMMUtKWrY4hw6mkzxmEkPjozh54ncmjU0u9Nqkp8cxN2UJH6/fSpt2Yby0ZiEOh4Np\nE57NvaZaYFVu7NCKx0ZOBeDXX47xwuvzeHXlGxc6dM1Fc9FcNBcA7urdi4QpSTwwNBaHw0HSpAnU\nCgpiUtKTnDlzhsaNQune9TYAnpicyEOxw+l6Wxe2fLqdqJjhACRO/PPnvsvlYsdnu0ieZuVyZe3a\nDBzyIP3u6WN7LiVh46Chk+QfHJuvEvUYAORr+IlIA2A1MM8Y82pxN3G43e4iLxCRrcBtxphTnv3L\ngE3GmA7FpvDnZ+QGLyL3GWNeKa5MWMMuRQemlFJl3I49qy91CBfM5TWvtK26e/+xBT7/vL99Rmyh\ncYlIH6CnMSZaRDoCCcaYO/9yzTfGmCZ59q8BPgRGePkY06sW6TfAFhF5BTgD3AWcFJGJAMaYqYUk\n0Bjrwe6NeJrTwB7gEW8CU0opVTHYOCFDKnC7iGz27A8WkfuAQGPMEhG5ivxdv2ANPKoFJHjqOTfQ\nwxhTaH+4NxVpmmc794Dgfc/X4jJfAozzPOAFwPMbwXKgsxf3VUoppXzmGTz017dM0vKc/wVo85cy\nDwMPl+Q+xVakxpgpJfnAPJx5K1HPZ20VER8/TimlVHlUViZW8JU3LVJf7RaRZVhDj09gPfCNAL6w\n8Z5KKaX8jCPAv2tSOyvSOKyXYW/GGoJ8EliL1WetlFJKAdoiLZSnbzoVrTiVUkqVY95MyHAEqAcc\nxxpgFOT5/ltgqDHmc1sjVEopVa5VhGXUPgLuNsZcaYypDfTEmuVoGFDw+kRKKaVUBeFNRdrSGJM7\npYcx5h2s5dR2YU1Cr5RSSvnM35dR8+YZ6XERGQ68iFXx3g8cE5Hr8a4iVkoppQpVEbp27wduB34A\nDgG3AgM9xx63LTKllFIVQrlvkRpjvgfuKeBUwSvmKqWUUhWIN6N2/wEkAbXJMy2gMaZxoYWUUkop\nb5WVpqWPvHlGOhdrge4vAV2RRSmllMrDm4r0F2PMWtsjUUopytfSY8o7/j7YyJuK9GMReQZrztys\ncweNMRtti0oppVSF4ef1qFcVaXvP19Z5jrmBv1/4cJRSSlU05X7SemPMbRcjEKWUUsofFVqRishi\nY8wwEfmQAgYZGWO0RaqUUqrUynPX7iLP18kXIQ6llFLKLxVakRpjdnq+vcEYs/DccRGpCqRgTWav\nlFJKlUpFGLUbKSK9gMGAAEuxRvAqpZRSpebn9ahXg43uEJE4wACZQG9jzA7bI1NKKVUh+HuLtNhJ\n60XkNmAk8ArwNTBBROrZHZhSSinlD7zp2l0GRBtjPgQQkRHAdqC+nYEppZSqGPy8QerVMmp/O1eJ\nAhhj5gOd7QtJKaWU8h+FVqQistjz7Vsisj7vhtVKLZaIBIlITc/3d4vIEBHxphVcYpUvq8yTsyew\nMvU5FryQTIOGfzaYI3p3Y8Xq+QWWi47tz4rV83n5zUX0vrcHAJ1uacdLbywgZf7k3OsenzKKuvXq\n2BH6eTQXzcVu5SkXgL5Rg4mJjScmNp6JidM5kp7OA0NjGTQsjqQZM8+73u12k/hUCgOihxETG8+R\n9O8B2LxlK/0HDWHMuAm5105PeYYfjx7VXGzkcDh83sqColqked8jnVLAViQReRDYAewUkWeBu4GW\nwD9LEW+h7r6vJ66MTKLuiuOpyXMYP3UUANe3aEpk3x4FlmnbIZzwNi0Y2GcEMf1GUTfY+offLyqS\nYQPG8PN/fqHZDU1oKo3J+D2Doz/8ZEfomovmormUQnZ2NgBLF8xj6YJ5TE0YT/KzcxgZN5znFz+H\n2+1m/Uf5pwZfv2Ej2dnZvLhsMaNGxJIyaw4A/1q1msXzZlPnqqswaftJO/AN1asHEly3ruZip4BS\nbGVAoWGce4/UGPMRcAxrdqO8W3EGA82BtkAf4H5jzMNAk1LGXKAmTUPZtGEbAIcOphPaJISaQTWI\nfzSGGZMLXoO88y3tOZB2kFmLk5izdDob138CgMuVibOqkyrOKmSdyiI6rj/LFrxsR9iai+aiuZSS\n2X+AU6dOMfyhhxkSN5IvvtzLvq/TaNu6FQA339SRrZ/mf9Hgs8930/mmjgCEtWzBV/sMAIHVqpGV\nlUXW6dM4nU6WPr+SmIEDNBeb+XuL1JuFvV/Bqgy/z3PYm0nrKwPVgCuA6kCgiJwGqvgWatHM3gN0\n6dqJDe9vJqx1c4LrX0PS0+OYmTif7Ow/CvwPXqt2EMH16hAfPY5rQ4KZs2Q6vbsOZPHclYxNiMfs\nO0BI6LXs2r6HiN7dkObX8dbr7/HFrq/sSEFz0Vw0Fx84q1RhcNT99Ondi0OHjxA7ajTuPL/rBwZW\nIyMjI18Zl8tFjeqBufuVKgWQk5PDsJhBJD87m2ZNr+PwkXTatArj7ffeJy1tP73u7EH431pqLuo8\n3jSMW2HNbnRbns2beXafAfYBC4DlWCN9t+Ll89WSSn1tHS5XJstfm8Ott3fG7XZTv0EwE6aNZsbc\niTRqEsKjCSPylTn+2wk2b9zO2bNnOXQwndOns6l1RRDffXOYx0ZOZfnCV4jsG8G6NR/QqUt7pifM\nYtjIgXaEr7loLpqLj0IbhnDnHd0BaBjSgFpBQRz79VjueZcrkxo1qucrExgYiCszM3c/J8dNQEAA\njUNDSZ42leiBA0h9ay0Rd3Tnky3bGD92DIuWLtdcbOJw+L6VBd5UpNuA60r6wcaYl4wx9YwxPYwx\njwJ9gbuMMYuKK+uLluHXs23zTgb3Hcn76z7ivbUfcvc/BjPkvkcYGz+Fbw8cYmZi/gEUu3bsoXMX\na5W4q+tcibOqk+O/ncg9f0//XqxZ9Y7VhYD1N+as6rQjfM1Fc9FcfJT65lpSZlnd0T/9/DMZLhc3\ndWzP9p27ANi0ZSttWrXKV6Z1eBgfb94CwO49X9L0usb5zq9KXUNkzwjcbnduizAr67TdqZSrXCoS\nb0bQrgf2isgPwBnAAbiNMY2LLpafMWYPgIgMMcYsKXGkxTh0MJ3kMZMYGh/FyRO/M2lscqHXJj09\njrkpS/h4/VbatAvjpTULcTgcTJvwbO411QKrcmOHVjw2cioAv/5yjBden8erK9+40KFrLpqL5lIK\nd/XuRcKUJB4YGovD4SBp0gRqBQUxKelJzpw5Q+NGoXTvaq0G+cTkRB6KHU7X27qw5dPtRMUMByBx\n4hO5n+dyudjx2S6Sp1m5XFm7NgOHPEi/e/poLjYpK886feVwu4seNyQih4Ao4FDe48aYQwWXKPAz\nAowxOZ7v7zPGvFJcmbCGXbwZ0KSUKmd27Fl9qUNQBbi85pW21Xafz17p88/7VqOiLnkt7E2L9Gfg\nY2NMiRIVkcZYz0lvBM6ISACwB3ikxFEqpZQqv/y8RepNRbob2Coi7wPZ5w4aY6YWU24JMM4Ys+3c\nARHpiDXwSGdGUkopVS54M9joMLAO+APr+ei5rTjOvJUogDFma4kjVEopVa45Ahw+b2WBN8uoFTuL\nUSF2i8gyrLVLTwA1gAjgCx8/TymllCpzbJn31iMOiARuBmoCJ4G1QKqN91RKKeVn/PwRqX0VqWdw\nUipacSqllCqCv7/+4s3C3g8UcGxEQdcqpZRSJeXvMxsV2iIVkYexumQfFJGGeU5dBvQHCl5nSSml\nlKpAimqRHiD/KN1zWxYwyPbIlFJKVQx+3iQttEVqjFkLrBWR14wx+0TkCmPMbxcxNqWUUqrM82aw\nURUR+RqoJiI3AR8BfY0xn9kbmlJKqYqgrLwP6itvJmSYA9wF/GqM+R6IBRbaGpVSSqkKw897dr2q\nSKsZY/ad2zHGvI9Ni3MrpZSqgPy8JvWmIj0mIuFgLWQnIvcDx4ouopRSSlUM3jwjjQVeAFqIyHFg\nPzDA1qiUUkpVGGWkYekzb+ba/Qa4WUQCgUrGmJP2h6WUUkqVjog4gOeAcKxXN4cYY77Nc74d8LRn\n9ygwwBiT7TlXB9gBdDPGpBV1n2IrUhFpDYwHagMOEQHAGPP3EuaklFJKncfGUbuRQBVjTCcR6YC1\nRnZknvOLgbuNMd+KSDTQENgvIpWxBtVmenMTb7p2VwCLgC/xPCdVSimlLhQb59q9GWsFMowx20Tk\nxnMnRKQZ8CswWkRaAmuNMfs9p2cCC4Bx3tzEm4o00xgzrySRK6WUUl6z7xlpTaxlPM85IyIBxpgc\n4CrgJqyVyr7FmoBoB1ar9CdjzPsiMt6bm3hTkb4nIg8B72H1MQNgjDnsXR5KKaXUJXESay3sc85V\nomC1Rg+ce/4pIu8C7YA7AbeI3A60AlaIyH8bY34q7CbeVKRRnq+j8xxzA429SkMppZQqgo1du5uB\nnsAqEekI7Mlz7luguog09gxA+i9giTEm5dwFIvIhMLyoShS8G7XbyJfolVJKqUssFbhdRDZ79geL\nyH1AoDFmiYjEAK94BtF+Yox55y/lvRoXZNvC3koppZQ37GqRGmPcWHMh5JWW5/wGoEMR5b16O0Ur\nUqWUUpeWN3PslWFehe95pwYRqeyZmEEppZS6IBwOh89bWVBsRSoifYFdnt2GgBGR3rZGpZRSSvkJ\nb1qkE4BukDtdYBtgijcfLiIhItJXRAaLSC8Rqe17qEWrfFllnpw9gZWpz7HghWQaNKyfey6idzdW\nrJ5fYLno2P6sWD2fl99cRO97ewDQ6ZZ2vPTGAlLmT8697vEpo6hbr45d4eejuWguditPuQD0jRpM\nTGw8MbHxTEyczpH0dB4YGsugYXEkzZh53vVut5vEp1IYED2MmNh4jqR/D8DmLVvpP2gIY8ZNyL12\nesoz/Hj0qOZio3LfIgUuN8b859yOZxhwsdF7pltajlXxxmG9m7NaRPr4GGuR7r6vJ66MTKLuiuOp\nyXMYP3UUANe3aEpk3x4FlmnbIZzwNi0Y2GcEMf1GUTfY+offLyqSYQPG8PN/fqHZDU1oKo3J+D2D\noz8UOQJac9FcNJdLkEt2djYASxfMY+mCeUxNGE/ys3MYGTec5xc/h9vtZv1HG/OVWb9hI9nZ2by4\nbDGjRsSSMmsOAP9atZrF82ZT56qrMGn7STvwDdWrBxJct67mogrlTUW6SUReEZGenm0FsMWLcg9g\nTfb7ONAFuAboDozxPdzCNWkayqYN2wA4dDCd0CYh1AyqQfyjMcyYPLfAMp1vac+BtIPMWpzEnKXT\n2bj+EwBcrkycVZ1UcVYh61QW0XH9WbbgZTvC1lw0F82llMz+A5w6dYrhDz3MkLiRfPHlXvZ9nUbb\n1q0AuPmmjmz9dEe+Mp99vpvON3UEIKxlC77aZwAIrFaNrKwssk6fxul0svT5lcQMvHiLXZWnXErE\nUYqtDPBm1O4I4CFgOPAHsBFrNv3i1OLP6ZkCgSuNMdkiUtXHWItk9h6gS9dObHh/M2GtmxNc/xqS\nnh7HzMT5ZGf/UWAXQK3aQQTXq0N89DiuDQlmzpLp9O46kMVzVzI2IR6z7wAhodeya/seInp3Q5pf\nx1uvv8cXu76yIwXNRXPRXHzgrFKFwVH306d3Lw4dPkLsqNG487z+FxhYjYyMjHxlXC4XNar/OW6y\nUqUAcnJyGBYziORnZ9Os6XUcPpJOm1ZhvP3e+6Sl7afXnT0I/1tLzcUGNk5af1EU2iIVkXPt/2uA\n17Aq1IeB1YA3fQMzgc9FJBVrdolkEZkIvFGqiAuR+to6XK5Mlr82h1tv74zb7aZ+g2AmTBvNjLkT\nadQkhEcTRuQrc/y3E2zeuJ2zZ89y6GA6p09nU+uKIL775jCPjZzK8oWvENk3gnVrPqBTl/ZMT5jF\nsJED7Qhfc9FcNBcfhTYM4c47ugPQMKQBtYKCOPbrsdzzLlcmNWpUz1cmMDAQV+afC3vk5LgJCAig\ncWgoydOmEj1wAKlvrSXiju58smUb48eOYdHS5ZqLXRwO37cyoKiu3SWerx8BG/Js5/aLZIxZCdwI\nTAfaG2PWAtOMMVN9jrYILcOvZ9vmnQzuO5L3133Ee2s/5O5/DGbIfY8wNn4K3x44xMzE/AModu3Y\nQ+cu7QG4us6VOKs6Of7bn/Mb39O/F2tWvWM91Pb0ITirOu0IX3PRXDQXH6W+uZaUWVZ39E8//0yG\ny8VNHduzfaf1ssGmLVtp06pVvjKtw8P4eLP1hGr3ni9pel3+GU9Xpa4hsmcEbrc7t0WYlXXa7lTK\nVS4VSaFdu8aYnp5v2xpjjuU9JyKh3ny4MeZXrImBz+2fFZEhxpglRRTzyaGD6SSPmcTQ+ChOnvid\nSWOTC7026elxzE1Zwsfrt9KmXRgvrVmIw+Fg2oRnc6+pFliVGzu04rGRVr3/6y/HeOH1eby60pYG\nteaiuWguPrqrdy8SpiTxwNBYHA4HSZMmUCsoiElJT3LmzBkaNwqle9fbAHhiciIPxQ6n621d2PLp\ndqJihgOQOPGJ3M9zuVzs+GwXydOsXK6sXZuBQx6k3z22jJMst7mURBlpWPrM4XYXPJWgiDTAepS7\nDujBn491KwPrjDHXe3uTPMvWICL3GWNeKa5MWMMuuvapUhXQjj2rL3UIqgCX17zSturu4Ko1Pv+8\nb3RP70teDRc12GgKcBtQD2uA0TlngLXFfbCINMZajfxGPGvAYc28/4jP0SqllCp3ysr7oL4qqms3\nGkBEHjPGzPDhs5cA44wx284d8Cxjsxzo7MPnKaWUKo/8fNSuN6+/vC4i9wMvAwuxJlh4xBizqZhy\nzryVKIAxZqtnuRqllFIKKMct0jyWAXOB3oBgLfA9E+hYTLndIrIMeBfrXdIaQATwhc/RKqWUUmWM\nNzMbOY0x/8ZaZfwlY8zHwGVelIsD3sJa6+0e4CasZ6txPsaqlFKqPKoAMxudFZG7sSrSBBGJBM4W\nV8izoGqqZ1NKKaXKJW9apMOwJpwfYYz5EfgfIMbWqJRSSlUY5X71F2PMHuBR4FMRCQHGAVfbHZhS\nSqmKwRHg8HkrC4rt2hWRJ7Gea16GNUtRPWAH1rNPpZRSqnTKSMvSV9507f4P0AB4FbgVa5Hvn22M\nSSmlVAVS7rt2gR+NMSeBL4FwY8yHWCvCKKWUUhWeN6N2T4hIFLATeEhEfgCusDcspZRSyj940yKN\nAeoYYzYA3wGLgAk2xqSUUqoiKe/vkRpjfgCe9nw/xvaIlFJKVShlZfStrwqtSEUkByh0aRtjTCVb\nIlJKKVWxlJFBQ74qavUXb7p9lVJKqVIpK6NvfVVoZSkisXm+b/GXc7PsDEoppZTyF0W1Oofm+X7l\nX87dYkMsSimllN8parCRo5DvlVJKqQunvA42+otCBx0ppZRSpeHvz0iLqki18lRKKWU//65Hi6xI\nW4jIt57v6+f53gEE2xuWUkqpiqI8t0ibXbQolFJKKT9V1Hukhy7UTUQkAKsV+6MxJudCfa5SSil1\nqdk26YKILPV87QCkAauBL0Wko133VEop5YcCHL5vZYCdsxc18nydBvQwxnTAWst0ho33VEop5Wcq\nwnqkpXXWGLMfcifAt+WelS+rzJOzJ7Ay9TkWvJBMg4b1c89F9O7GitXzCywXHdufFavn8/Kbi+h9\nbw8AOt3SjpfeWEDK/Mm51z0+ZRR169WxI/TzaC6ai93KUy4AfaMGExMbT0xsPBMTp3MkPZ0HhsYy\naFgcSTNmnne92+0m8akUBkQPIyY2niPp3wOwectW+g8awphxfy5wNT3lGX48elRzsZPD4ftWBthZ\nkQaJyE6goYjEiIhTROYDF+zZa15339cTV0YmUXfF8dTkOYyfOgqA61s0JbJvjwLLtO0QTnibFgzs\nM4KYfqOoG2z9w+8XFcmwAWP4+T+/0OyGJjSVxmT8nsHRH36yI3TNRXPRXEohOzsbgKUL5rF0wTym\nJown+dk5jIwbzvOLn8PtdrP+o435yqzfsJHs7GxeXLaYUSNiSZk1B4B/rVrN4nmzqXPVVZi0/aQd\n+Ibq1QMJrltXc7GRtkgLYYxpC3QCBgJbgRxgDzDYjvs1aRrKpg3bADh0MJ3QJiHUDKpB/KMxzJg8\nt8AynW9pz4G0g8xanMScpdPZuP4TAFyuTJxVnVRxViHrVBbRcf1ZtuBlO8LWXDQXzaWUzP4DnDp1\niuEPPcyQuJF88eVe9n2dRtvWrQC4+aaObP10R74yn32+m843WcM1wlq24Kt9BoDAatXIysoi6/Rp\nnE4nS59fSczAAZqLKpK3Mxv56hogFAgEGgOvGWP+sONGZu8BunTtxIb3NxPWujnB9a8h6elxzEyc\nT3b2HwX+5lKrdhDB9eoQHz2Oa0OCmbNkOr27DmTx3JWMTYjH7DtASOi17Nq+h4je3ZDm1/HW6+/x\nxa6v7EhBc9FcNBcfOKtUYXDU/fTp3YtDh48QO2o07jzzyQQGViMjIyNfGZfLRY3qgbn7lSoFkJOT\nw7CYQSQ/O5tmTa/j8JF02rQK4+333ictbT+97uxB+N9aai7qPHaO2o0GlgNtgDjgTmC1iPSx436p\nr63D5cpk+WtzuPX2zrjdbuo3CGbCtNHMmDuRRk1CeDRhRL4yx387weaN2zl79iyHDqZz+nQ2ta4I\n4rtvDvPYyKksX/gKkX0jWLfmAzp1ac/0hFkMGznQjvA1F81Fc/n/7d17vFVj/sDxzz4unTqlpmjk\n0o18meguKhwpIZoiwzCKblJSPzUi0r1QLil3NaEZZgZdqGhQSCrdJmXyrUhkMN3TSaU6vz+eZx/r\nbHuf07msc/2+X6/zOmfvtZ71PN+19tnf/Txr7fXkUs0a1bny8jYA1Kh+KpUqVmT7tu0Zy9PS9lKh\nQvlMZVJSUkjbuzfj8eHD6SQlJVG7Zk3Gjh5B1843Mf3NWbS9vA0fL1rCvQMH8OzkKRZLWOyq3YRu\nBlqr6j1AKq532gYYEEZlZ9c/kyULl9Plur68M+cD5s6aT8fLutD9hjsZ2Gc4X27YxMMjM19AsXLZ\nalqkNgXghKpVSC6bzM4duzKWX3tjO2a+9pYbi/f3sEoumxxG8y0Wi8ViyaXpb8xi3Hg3HP2/LVvY\nk5ZGs/ObsnT5SgA+WrSYRg0aZCrTsH49FixcBMCq1Wuoc3rtTMtfmz6TDle1JT09PaNHuG/f/rBD\nKc0nHjYAABWkSURBVFGx5ERxP0ca5tBuJeA4YBduaLeKqh4QkbJhVLZp42bGDhhKjz6d2L3rR4YO\nHJtw3VGPDGLiuEksmLeYRufW428znyESiTB68GMZ65RLKUuT8xpwd98RAGzbup0XX3+Cf0ydEUbz\nLRaLxWLJpavbt+P+4aO4uUcvIpEIo4YOplLFigwd9QAHDx6kdq2atGnVEoD7ho3kjl49adUylUWf\nLKVTt54AjBxyX8b20tLSWLZiJWNHu1iqVK5M5+63cf21oQymldhYcqSIJMTciqSnh3NvehHpBIwA\n/g3UBfrjhnlR1RHZla9XI9Vumm9MKbRs9bTCboKJ49jjqoSW7bYu/TjX7/fHn9u80LNwaD1SVZ0q\nInNwFxmtV9WdIvKWqh4Kq05jjDGmoIV61a6qbgO2BR4fEpHuqjopzHqNMcYUI8V8aDfsr78A7qb1\ngZvVpxVEncYYY0o3EYkATwH1gX1Ad1X9MrD8/4DuQPTuIT1Vdb2I3AP8HjgGeEpVs7zMObREKiK1\ngUeBJsBBPwPMauDOsOo0xhhT/IR49W0HoIyqNvcTqDzqn4tqDHRS1ZXRJ0QkFWjmy6RwBN80CbNH\nOgkYpKpLAg08H/fd0hYh1muMMaY4CS+RXgC8DaCqS0SkSczyxsAgEakGzFbVB4HLcDOVzQAqAHdl\nV0mY3yNNDiZRAFVdHGJ9xhhjiqFIUiTXP9mIfgUzKjo6GvUKcBvQEmghIlcCx+MS7LVALyDb+12G\n2SNdJSJ/wX0a2IXL7G2BT0Os0xhjjInajcs9UcHrdQAeV9XdAP5bJg2BrcBaVT0IrBORfSJyvKpu\nTVRJmIm0N24s+gLcp4LdwCxgeoh1GmOMKW7CG9pdCFwFvOZPLa6OLhCR43BDuGcCPwGXAJOBo4C+\nwGMichJQjsC3T+IJ83uk6bikaYnTGGNMYZgOXCoiC/3jLiJyA5CiqpNEZBDwPu6K3vdU9W0AEblQ\nRD4BIkBvn88SCu3ORnlldzYypnSyOxsVTWHe2Wj7p8ty/X5fuV6TQv8SaoF8j9QYY4xJpKjcfD63\nLJEaY4wpXEVkOrTcCvPrL8YYY0yJZz1SY4wxhSoSKd59uuLdemOMMaaQWY/UGGNM4bKLjYwxxpjc\ns6t2jTHGmLywq3aNMcaY0st6pMYYYwpVcR/atR6pMcYYkwfWIzXGGFO4inmP1BKpMcaYwlXMb8hg\nidQYY0yhithVu8YYY0zpZT1SY4wxhauYnyO1HqkxxhiTB6EmUhE5QUQ6ikhXEblGRKqFVdfRxxzN\nA48PZur0p3j6xbGcWuPkjGVt27fmpWlPxi3XtdeNvDTtSV5+41na/+EKAJpfdC5/m/E0454clrHe\nPcP7ceJJVcNqfiYWi8UStpIUC8B1nbrQrVcfuvXqw5CRY/hm82Zu7tGLW27tzaiHHv7V+unp6Yx8\ncBw3db2Vbr368M3mbwFYuGgxN97SnQGDBmesO2bco3z3/fcWS4gikUiuf4qC0BKpiHQHZgMtgBrA\nBcCbInJbGPV1vOEq0vbspdPVvXlw2ATuHdEPgDPr1qHDdVfELdP4vPrUb1SXztfcTrfr+3FiNfeP\nf32nDtx60wC2/LCVM846jTpSmz0/7uH7//4vjKZbLBaLxZIHBw4cAGDy008w+eknGHH/vYx9bAJ9\ne/fkheeeIj09nXkffJipzLz3P+TAgQP89S/P0e/2XowbPwGAv782jeeeeJyqxx+PrlvPug1fUL58\nCtVOPNFiCVMkKfc/RUCYregCtFDV/qo6VFX7A82BbmFUdlqdmnz0/hIANm3cTM3TqnNcxQr0+XM3\nHho2MW6ZFhc1ZcO6jYx/bhQTJo/hw3kfA5CWtpfkssmUSS7Dvp/20bX3jfzl6ZfDaLbFYrFYLHmk\n6zfw008/0fOO/6N77758uuYz1n6+jsYNGwBwQbPzWfzJskxlVvx7FS2anQ9AvbPr8p+1CkBKuXLs\n27ePffv3k5yczOQXptKt800WS8giSZFc/xQFYV5sdAxQFvg58Fw5ID2MyvSzDaS2as777yykXsPf\nUe3k3zLqkUE8PPJJDhz4Oe4QQKXKFal2UlX6dB3EKdWrMWHSGNq36sxzE6cy8P4+6NoNVK95CiuX\nrqZt+9bI707nzdfn8unK/4QRgsVisVgsuZBcpgxdOv2Ja9q3Y9PX39CrX3/SA28zKSnl2LNnT6Yy\naWlpVCifkvH4qKOSOHz4MLd2u4Wxjz3OGXVO5+tvNtOoQT1mz32HdevW0+7KK6h/ztkWi/mVMHuk\nI4HlIjJHRF4RkdnAEmB4GJVN/+cc0tL2MuWfE7j40hakp6dz8qnVGDy6Pw9NHEKt06rz5/tvz1Rm\n545dLPxwKYcOHWLTxs3s33+ASr+pyFdffM3dfUcw5ZlX6HBdW+bMfJfmqU0Zc/94bu3bOYzmWywW\ni8WSSzVrVOfKy9sAUKP6qVSqWJHt27ZnLE9L20uFCuUzlUlJSSFt796Mx4cPp5OUlETtmjUZO3oE\nXTvfxPQ3Z9H28jZ8vGgJ9w4cwLOTp1gsYYlEcv9TBISWSFX1TeAs4G7gCeAeoK6qzg6jvrPrn8mS\nhcvpcl1f3pnzAXNnzafjZV3ofsOdDOwznC83bOLhkZkvoFi5bDUtUpsCcELVKiSXTWbnjl0Zy6+9\nsR0zX3vLndTGHbDksslhNN9isVgsllya/sYsxo13w9H/27KFPWlpNDu/KUuXrwTgo0WLadSgQaYy\nDevXY8HCRQCsWr2GOqfXzrT8tekz6XBVW9LT0zN6hPv27Q87lBIVS2kS6vdIVfUgsDr4nIh0V9VJ\n+V3Xpo2bGTtgKD36dGL3rh8ZOnBswnVHPTKIieMmsWDeYhqdW4+/zXyGSCTC6MGPZaxTLqUsTc5r\nwN19RwCwbet2Xnz9Cf4xdUZ+N91isVgsljy4un077h8+ipt79CISiTBq6GAqVazI0FEPcPDgQWrX\nqkmbVi0BuG/YSO7o1ZNWLVNZ9MlSOnXrCcDIIfdlbC8tLY1lK1YydrSLpUrlynTufhvXX3uNxRKS\nonL1bW5F0tNDOWWZkIjcoKqvZLdevRqpBdswY0yRsGz1tMJugonj2OOqhJbt9n63Kdfv9+Wq1Sj0\nLFzgdzY6kiRqjDGmFCkiV9/mVmiJVETmA2Vino4A6araPKx6jTHGmIIUZo/0HuB54GrgYIj1GGOM\nKcaK+znS0BKpqi4RkalAPVWdHlY9xhhjTGEK+6rdcWFu3xhjTAlQRG71l1s2jZoxxphCZUO7xhhj\nTF4U8x5p8W69McYYU8isR2qMMaZQFZVZXHLLeqTGGGNMHliP1BhjTOGyi42MMcaY3IsU84uNLJEa\nY4wpXMW8R1rgs78YY4wxJUnx7k8bY4wxhcwSqTHGGJMHlkiNMcaYPLBEaowxxuSBJVJjjDEmDyyR\nGmOMMXlQIr9HKiLnAQ+qasscrP848DPwjqqO8M/PAKr4539S1StDanKwLRHgKaA+sA/orqpfBpa3\nA+73bZqiqpMSlRGR04AXgMPAGlW9PbCdE4CPgHNU9UBxiitQ5lHgc1V9Luz2x5ObmALLcvQaLUjZ\nxeXXKQf8C+iqqusKvpU5k2h/Z3WMipJg+7P6v/brZnv8TP4qcT1SEbkLeB4ok4NizwB/VNULgfNE\npL5/vo6qXqiqlxREEvU6AGVUtTkwCHg0ukBEjvaPWwMXA7f6hJiozKPAvaqaCiSJSHu/nTbAXOC3\nBRKRk29xicjxIjIHaFeA7Y8nNzHl9jVakBLGBSAijYEPgNqF0LYcS7S/szpGRUmc9sf9vw7I8viZ\n/FfiEimwAbg6+kBEzhGRef7nVRGpEFzZPz5WVb/yT80FWotIVaCSiLwhIh+KSEEl0guAtwFUdQnQ\nJLDsLGC9qu5W1Z+BBUBqnDKN/fqNVXWB//st3BsGwCGgFbA9xDhi5Wdc5YGhwNSCaXpCOYnpI+Ai\nvyzTa7QIyiougGNxb9afF3C7civR/s7qGBUlse1P9H8dld3xM/msxCVSVZ0OHAw89RzQW1Uvwb3o\n7o4pchywO/D4R6AicAzwMO4NoyPwmIgcH1a7Y9qzK/D4oIgkJVi2x7e1Qszzh0TkKCB4361oXKjq\ne6q6I2Z52PIrriRV/UpVl1Kw7Y8nJzEF93/sa7SoySouVHWRqn5L4e//I5LF/k54jIqSOO2P+38d\nkOXxM/mvRJ4jjXEW8JSIgEuO60XkduBaIB24BffCi6oA7AS+B55V1cPAFhFZCQiwNeT27vZtiEry\nbYgui23rjgRlDonI4Zh1d8bUVZD3h8yvuIIxFbacxhS7/4uqor7f80txPUbZ/V+XluNXZJSGTymf\nA519j/RuYJaqPqmqLf25z6+B/SJSy5+kvww3tHgp8CqAiJQH6gJrC6C9C4G2vt7zgdWBZWuB00Wk\nkogcC1wILAI+TlBmhYhEh6quwMUVVJA9ivyMq6jISUwX4WIKKqo9uqziKs5i9/eRHKOiKLv/65J6\n/Iqs0tAj7Q1M9RcWHAa6xVnnNuBl3AeLf/lhQ0SkjYgswp1THKSqBXFOcTpwqYgs9I+7iMgNQIq/\nkrU/7mrJCDBZVb8TkV+V8b//DDwvIsfg3jRei6mrIHuk+RlXVGHPuJCTmCap6ncx5Qu7/YlkGVdg\nvaLa/kTSAXJ4jIqiuP/XIvIicB9xjl+htLIUsdlfjDHGmDwoDUO7xhhjTGgskRpjjDF5YInUGGOM\nyQNLpMYYY0weWCI1xhhj8sASqTHGGJMHlkhLKBGpISL7RWSFiKwUkVUi8qWIDAuhro0iUj0H6/cU\nkVtzUU9NEZnk/24sIqHN+iIi88LadqCOYSLSwv89P/Al+zDqShWR+f7vHiJyvf97uIhclU3Zw/53\nro5bzLZeEJETs1h+s4hMyWYbOdpXItLB383MmFCUhhsylGbfqmqj6AMRqYa7ReIrqqr5WE+Ovoys\nqs/msp6a+BlHVHU5kKc39WxcHOK2o1KB0BN2QPQ4NQfmA6jq0CMtl4fjBoCf+OFbVf3+SOrLL6o6\nQ0TeE5F/qGrYt/g0pZAl0tLlJP/7RwARuRu4DjcyMVdV7/HP9wX64O53q8AGVR0hIodVNcmvczOQ\nqqpd8bde8zPpTAZO9nV9qKo3i0gqMNbXswb4yrfjX7h5E9P9Ns7x7Vnst1MRqAa8oqr34uaMrSUi\nE3F3cxnm52c8A3gWqIy74X1fVV3ueza7cLPGnAyMUNUXgjtERFoBD+HuerUDuBEY4pctUtVmIrIF\nWIabdu5c3J1lMu03EamBu6PMGqAh7l7Nf1DVnSJyHTAcSANW4v7v5uFm5ZgkItGZPXqIm2O1EtBP\nVWfHtHWK38YFft/cCXQC6gEzVPUuf1wuVtUuvsx83Ew5wXh/D7QUke98vPNx06K9CXwB1PHH6CZV\n3RkoOxRI96+Fy31MRwMbgR6qukNENgJLcHNhXhiTuAYCPfy2TkpwjIPxbgRm4m7dl46b+3RVon0l\nInWBiUAKUBV4VFUn+vWn4V7TwzAmn9nQbsl2sh/aXeuTwQigg6r+V0QuwyWYJkAj4BQRuVFEzgF6\n4ZLBRbg31ajsegpXAitVtQVwBtBcRBr6ZXWAltE3eNwb8iJVbeh7zS/i7oM8DbgBeNnPp1gfuF1E\nKgN9gWWqekdMe6YC41W1PtAfeN3fPg3gFD/P7O9xs/nEug/oqapNcYmkoar2A1DVZn6dKsAY387W\n8fabX68+8LCqnoNL4H8SN2PQYz72Jrhkn66qU3HJuZuqfubL7/Dr9COQ/GJUU9UGfvkUXK+8IW4u\nzeiNyhMeJ1V9D3gDGKKq78QsPhuXfM7G3aN6WLxt+JgeANqoamPcB6KxgVVmq+pZwSQqIr/Bze8b\nnQQ80TGOtdXv96HAS4Hng/tqiH+uOzBSVc8DLgFGB9b/EPcaMCbfWSIt2b5V1UaqehbuTehY/JAe\nLiE0BZYDK3DJoa5/fpaqpqnqfuCVwPayvMm6qv4deFdE+uF6BpVxc4f6xbonXjlxE413w/WuUNVH\ngG9EZACuF3oMrpcRr2wKcLqqzvRllwDbcDP1gHuTR1XXAL+Js4mZwAzfy/1cVd/1z8cmo0/870T7\nDeAHVf3U/73Gx38h8HFgOPPFmO0G9+kM//szXPKO5y3/exOwWlW3+f26LUF8OaGBeS5fxCWjeM4D\nqgPzxc2KdDtwWmD5J3HKnAb8N1DRkR7j5/36s3AfDKPJNrivotMbDgDKisg9uCQa3N4m4PQE8RiT\nJ5ZIS4+BwIm4YUmAo3C9uEaq2hD35jgGd4P+I3ldHBP7hIjcgeuZ/ABMwN1QO5oofoq3ERGpgxuW\n7aiq0SHnR4A7cEOGo3BJIlEST4qzLIlfTlvsyyoIVX0cd65yPTBWRAb5RcFtpvsPFRB/v0V7PsG6\nosPVh3yZIxGdczJaNp4DcdYPii37q+OUhUOBv5MSbB9cPAsC++Bc4A+B5fGO9eHg9uIc463EjznY\nhqRAG+Ptq1dx8wd/BmQaJgZ+JvP0Y8bkG0ukJVvGG5OqHsIl0ftEpCruHF0nEUkRNzPOTNwE5u8B\nbUWkvLippTryS+9si4j8Ttx0c/GGyVrj5nD9u6+7AVkkET8UOR13TnNdYFFrYJwf5q2OO996FO7N\nM9N5fZ98N4hIB7/N83HnMtdktT8CbVgMHKeqE3BDsNGLsw7JL5MhB8vF22/XJto+biq4JiLyW7/f\n/sgv+/NX8WTV1mxE19+Km4MXEamFO38aK1G9IiLR9bsAcxK0ZQnQzH8IAjfsOi6b9m0ETgk8jj3G\nJxP/tfJH37CrgbWquivOOsFtDlHVN/EXi/l9DlAL2JBNG43JFUukJVum4UlVnYubb3GUHyqbhntT\n/BRYoaov+fN1E/16H+AmCY72MAYBs3HzHX4ep57xwDARWQY84derlUX7+gCnAoP9V3RW+GHhMcBf\nRWQpbrhumd/OWqCSuOmigjoB/UTkU1xP+GpVPRgbf5zH0Zhe8G3uwS/n22YCq0SkTLCc32+vE7Pf\nEm3fnyfsB7zryxzNL/vzbeAZn/yPpK1ZnaOOLnsX2Cwin+M+GMTOVRld514RuSZmm9uB4SKyBjiB\nX3rasa+jH4CuwD9FZBXuA1P/rNqoqjuAL0TkTP/UA8Q/xrFa+OHj/kDnrOrAndNd6I/lpbgLpqLb\nbIk7psbkO5tGzWTiexlXqup4/3gG8HzsFaTmyEQvklLVYf7x48A6VX2yUBsWw191/L6qZvXBJ691\nXIW70vuuI1x/o1//63yoewHuA5Z9/cXkO+uRmlibgHNFZLXvbayzJJp76iaDryQin/n9WQF/AU0R\nFOqnat+bPzGrGzKE0R4R6Qi8aknUhMV6pMYYY0weWI/UGGOMyQNLpMYYY0weWCI1xhhj8sASqTHG\nGJMHlkiNMcaYPLBEaowxxuTB/wPZsEXOp7z/5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Cross-validated performance heatmap\n", + "cv_score_mat = pd.pivot_table(cv_score_df, values='score', index='l1_ratio', columns='alpha')\n", + "ax = sns.heatmap(cv_score_mat, annot=True, fmt='.1%')\n", + "ax.set_xlabel('Regularization strength multiplier (alpha)')\n", + "ax.set_ylabel('Elastic net mixing parameter (l1_ratio)');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use Optimal Hyperparameters to Output ROC Curve" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "y_pred_train = pipeline.decision_function(X_train)\n", + "y_pred_test = pipeline.decision_function(X_test)\n", + "\n", + "def get_threshold_metrics(y_true, y_pred):\n", + " roc_columns = ['fpr', 'tpr', 'threshold']\n", + " roc_items = zip(roc_columns, roc_curve(y_true, y_pred))\n", + " roc_df = pd.DataFrame.from_items(roc_items)\n", + " auroc = roc_auc_score(y_true, y_pred)\n", + " return {'auroc': auroc, 'roc_df': roc_df}\n", + "\n", + "metrics_train = get_threshold_metrics(y_train, y_pred_train)\n", + "metrics_test = get_threshold_metrics(y_test, y_pred_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAFtCAYAAAAaiCMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdgVFXax/HvTHpCKgkgCIiUo1KtWBFldd1XVOy9rqur\nsra1i2tfd9W1l7Xr6qprQV1RUdeyq0gVlCYHAeklgSQkpGdm3j/uTZiElAnJZDLJ7/MPM/feufPM\nYTLPPeWe4wkEAoiIiEjn4Y10ACIiItK2lNxFREQ6GSV3ERGRTkbJXUREpJNRchcREelklNxFREQ6\nmdhIByA7Msb0B5YD891NHvffx6y1L7Xy3B8Cb1tr/2GMmQuMtdYWNXJsGvCetXac+7zJ41sQw57A\n60AA6A6kAyvc3a8AhcCj7rYAzkXoNuB6a+0M9xx5wJqg0z5grX3DGHMEcD8QB5QCV1lrZ7cm3iY+\nx6fAmdba/FCPM8ZMAa6z1i5pg/ffFfgEqAZ+b62d2dpzys5rq7+PoPP1AZ601k4wxtwOXAGsdXd7\ngVScv8/rgl5zJDAJ6IPz/c8F7rbWfht0TG/gXmBfwAeUA/dZa//dFnGHizHGC3wAXGit3RzpeDo6\nJfeOq9Rau0/NE/cPcqExZra1dmFbvEHw+RuRBezfguNDfd+fgL0BjDHnAydba4+v2e9u+1+9beOB\nyW5CGwxsqR+PMSYOeAM42lo73xhzLPAqsEdbxN2Ao1p6nLV2fBu+/5HABmvt0W14TtlJbfX3EeRZ\nnERd401r7ZU1T4wxGcB8Y8yn1trPjTHHAw8C51hrZ7nHjAb+ZYz5vbV2qjEmG/gOuMVae6F7zAjg\nM2NMibX2izb+DG3GWus3xtwPPA2cGul4Ojol9yhhrV1vjPkZGGKM2Rf4LZACFFprxxljfgtchlPL\n3wL8wVprjTG74NSGdwFWAz1qzmmM8QPZbo3yZuA8oAr4GbgQeBFIdmsk++HUELOB44ATAT9Ooq0A\nzrPWLjbGDHRflwlsdON51Vr7j1YWwRdATyADOAjwG2O+xKn5vwPca62tMsb0sdb6jDEeYCDQ4BW+\nMaYMeBgYj1MDugHnB2M4sB4Yb60tCy6j4DLD+REF+MoY8384Fys347QY9ABesdbebox5Mei4Y4Fv\ncC5m5hpjLgH+gFOum4CJ1tplxpiXgCI3lr7AEuB0a21pUPxjgbuBNGPMF8BdOK0dJUAycADO/2Fj\n5y/DuXDrCbwN5OH8v/YELrbWft1Amd0EXOTG9g0wwVo7wL2o+iswBogB5gFXWmu3GWN+AV4Gxrmf\n5S1r7Y3u+cbjJK+aVpbalpl673uQe/5knO/cHdbaj40xfwKOAQ5x4/4eOAvYDTgTp3bbB6e2e761\ndqMx5isgHzA4SeJVt9yGuXF84cbhN8bcCZwAVOL8TV1grd3UxPbgv6fbgDNw/p6WumWf677/dDfm\nfsA31trzGvjMo4Eca+28+vuC9AKS3M8DTovVxJrEDmCtnWmMuRrn+zoVuNx9z9eDjplvjDkZp8Ws\nfhwpwONuvFXA+9baSe53aIG19iH3uNrn7v/5TJzv753AJGvtCPe4dOAXYADO79cTON+LOJyLl78Y\nY2KC3rMSpwXvQmttqbX2G2PM08aY4dbaBU2UTZenPvco4f7ADcT5owHYCxjjJvYxOIn5UGvtvsAD\nwGT3uKeA6dba4cCV1K3FBtxzH+++frT7R/gLThPghbgtCNZaf83xrjHAFe55vwOud7e/CvzTPc+V\nOIm4LVwKLHSTbCzwGXA0cBjwa2AigJvYe+A02f8V5wevIQnAOjfOp4HncBLSnjjdBCe4x9WfwjHg\nvs9F7vOx1tp1wDU4FzgH4HzmW4wxWfWOq2lSxe0+uA443Fq7N06LwwdB77OP+/n2BHpTr6biJt8/\n4fxQj3M3D8W5CNgbOLSZ848CRuMk+GuAImvtIcBjwE31C8sY82uc78i+1tr9cC6IasrmJqDKWruf\n+14bgL8EvTzFWjsG58f6D8aY/saYQcCfgd+439lLcVpmkuq9bwbwEk5tdD+c/5e/uy049+BcWN6A\n8717zFr7X/elBwOXWWuHAnPdz1Uj31o7zFr7JM4F3hxr7f5umecA17rnvwrY3/0//QwY3dh297w1\nf08X4nwn97XWjgIW4Vxg19jdWns4TvI70hhzeP3yBk4BptTbdoYxZq4xxhpjNruf6RJr7ffGmCyc\nC+1vGjjXf4A93cS6HzCt/gHW2mnW2kUNvPYuIMFaa3AuYA9xf2+as8BaO9Ra+xaQYoypadU4E5hi\nrd2K83/2glv2o4GjjDGn4Pz9jLXWjnT3rQBGBJ37Y+CkEGLo0lRz77hqaswenP+nPOAsa+06YwzA\nfGttiXvssTiJ/zu3xgqQYYzJxKkxXQtgrV3u1nbrG4fTD1/kHncd1Pb9N+Z7a+0G9/Fc4ET3h/gA\nnISLtXaJW6vcGWPczw8Qj1N7Pdk97/NBxxUZYx7CqaE+5u7PBXY1xuwNfGGMOcBau6yB96i5AFqO\n82O00X3+C06XBGwf70Azz48HxhtjzsZJyODUTPIbed0xwL9qWgSsta8YYx4JKvOp1tpqAGPMgqB4\nmrIm6AKiufN/6F6wbTLGlACfutuXN/Jev8H5jhS7z5/E6RYAp/Uj3RhT0z0Qh9NSUOMDN4b1xphN\n7vkPxKl5fhH0na0GBgHBNbKDcFqd3g86zgeMsNauNcacizM2Zba19q9Br/vMWrvcffwcTmtCjeAE\nOB7Y3xhzsfs8EfC75/4BmGeM+QT4xFr7pRvDDtvrldUxwEvW2nL3+aM4F3s1v7cfuuWxzRizjIbL\new+cC7Jgb1prr3TP8wROa8PUesfE4bTKBEtw/w3gtHy0pFL3K5yLP6y1VcARUHsB05TgMn4RuADn\nd+JC4DpjTDJwOJBpjLnHPS4F56LzAaDaGDMT53s52dYdN7Pcfa00Qcm946rT596AbUGPY3Cavm+u\n2WCM6W2tLXCbCoMTS3UD56omqIbqXuFnNBNf8A9IwH0PX9DjGr5mztOYOn3uwYwx5wA/BjXLeYAq\nY0wqMM5a+z6AtXaeMeZHnBpSQ8m9IuhxVROxeNz3jWtgX8D9oZqHc7HwDc6P2QTqlkP9FoCGfmC9\nOD/O0HD5Nif4O9Hc+Svq7Wvq84PzHQmOwR/0OAZn4OKnAG55JAbtr59sPO5rvrDWnlmz0a0Vr6t3\nbAyw2Fp7UNBxu+AMFAPo755/kDEm3a0R1sQbfI7g72H9cjrVWmvdc6exvXVmrNsF9ivgYWPMV9ba\nq4H627+01l5T75z1P0Ms28svlP9bv/u6HVhrq40xf8DphngApyk+3xhjgbFA/YFxRwI/WWuLjDEz\ncC6Yngo+wBhzKZBkrX2k3mvr/zbsitOFUj/u+HqvCy7jl4C5xpgXgHS3aT3V3XeQtbbCPXd3oMxa\nW2qMGYXT+nIkzpiBR621j7qvqf//KQ1Qs3zHFcqPeY3PgDONMb0AjDGX4/QdgnNlf4m7vR/ulXe9\n9/gPcJIxppv7/A6cq/Vq6l4ANhmTW6ubhtMvizFmAE6rQFuvTjQMuNMY43WbcScCb+L8IL7odmFg\njBmK07famlHkuThNmeC0HAR/lmqcH7XBOM3Uk6y1H+H8wMaz/ce55rhgnwKnG2eAU01NaHMjLQw7\no63P/xFwspv8wBnzUVMWnwITjTFxxhnR/AJwXzPn+xI42rjNUMYZt/AjdS8KAGYAg40xh7nHjcIZ\nE9LbbSl6Fae74A2ci6oa49yLAHCa/BsbCf4pbsuWMSYBp1Y90RgzwhizECcp/hWn+X5EI9tHuufy\nBJ3zQvciB5zuqf+6Nd9QLQV2b2yne67LgEvdMgH4I/CIMeaAmuPcv4UHcbouAJ4BDjfGBF9U7Yvz\nN99QH/Z/gPONMR63fN7B6ZLLw/27cL9jhzUR63pglvvez7vbinH+b2taCTNwfjtOMM7YlC9wuhPv\nAv7B9jLGLZdW323S2Sm5d1whJ0Rr7Wc4/cufu02JZ+AMeAMn8Q01xixix+bJmhrKJzhX19+5Nd2e\nwK04fadzjTGL3T69UGI6HzjNGDMPZ1DMCpwr/bZ0J05z9wKcJtJvrbUvut0UJwCPuk36z+Pcgra+\ngXM09VmC910FPGWMmYPzA7MhaN97wLc4tYgpgHWPGw8sxmlirj3OvdioKfP/4CSGL91m93Nxulca\niq3FF0dtfX5r7Vc45fmdMWYWzsVMzf/r3cBKnO/WQvd8f2zqvay1i3EuOt90vyt3AsdZa+vU8q1z\ny9PJwAPud/sV4Gxr7Rqc0eQfWmeE953A7saY37svXQe8aoxZjFO7r6lZ14/nKpwusJrv0o/A/dba\n+cC/gO+NMbNxmpOvbmx7vXO/gJMUZ7l/d6OAc5oqjwa8g9MV0ihr7TTgNZwm+pq/4/OAe4wxi9zP\nfidwrrX2Y/eYApyLz1OMMQvcv/fHgYtswyPl78Rp1fkRp6Vgitsy9jjOBdZPOBdYXzXzmZ7DKYfg\nsQdnAQcaY+bjDDL8p7X2DZzbOxfi3h2E09JwR9Drfu2WjzTBoyVfpS0ZY24B3rHWLnVreT/iDJrS\nlXYUc2t3B1trH3efXwMcENys3lGYBm6vjEbGmKk4rUFzIh1LR2Gcu0Qus9aeHulYOjr1uUtbWwq8\n5fb1x+BMjqHEHv2WAjca5/a9ALAKt7tHwuZSnBpyVF+ktBW3y+c6nC4haYZq7iIiIp2M+txFREQ6\nGSV3ERGRTiaq+tyrq32BgoK2HngtwTIzk1EZh5/KOfxUxuGnMm4fOTmpLbk1GoiymntsbINzOkgb\nUhm3D5Vz+KmMw09l3HFFVXIXERGR5im5i4iIdDJK7iIiIp2MkruIiEgno+QuIiLSySi5i4iIdDJK\n7iIiIp2MkruIiEgnE/bkbowZbYz5qoHtxxljZhljphljLg53HCIiIl1FWJO7MeZ64Dkgod72WOAh\n4FfAWOASY0xOOGMRERHpKsJdc18GnNjA9j2Bn621RdbaKuBbYEyYYxEREekSwrpwjLX2PWNM/wZ2\npQFbg54XA+nhjEVERKQ5gUCAwm2VBAKBVp9r89ZyNuaXEhez8/XouFgvv8lJbfHrIrUqXBFOgq+R\nChRGKBYR6cL8gQBFJZUN7vtk9VTmb17Y7Dmq/X48tHjhLvyBAIFAoEWvrfb78Xha/l4t5fcH8AcC\neNvhvdpSVbUfrxcIuUwD+PwB92gPAVqf1Nvabw57uMWvaa/kXr+UfwIGGWMygFKcJvkHQjlRzk5c\nwUjLqIzbRyTKubi0Ep+v+R+vbWWVlJRVAVBSVs3WkgpinV9MSsqryC0oJTkxrkXvPXfr1yzb9hOx\nsV48QGW1nxiPh2q/H2CnkmNbaOrH3JtQDoC/IrG9wpE24POD1wOhXpd4PR78gQBxsc533OfzEx/X\nNive+Xx+khJ2PtXu7IVceyX3AIAx5kwgxVr7vDHmWuAznMT/vLV2QygnyssrDl+UQk5Oqsq4HdSU\nc7XPT2lFNflF5dRvBcwrLKOwuMJJgjGh/4Fv3FLKktUFFJdWkdEtAY8HfP4AuQVlbfwpdhTbdwkx\nWRsb3OdNKId4qAxKlNVuzdAfCOD10ra1RI+HHQq14QPx+bf/sNfhTyG5vB+DPAeSlhLf6Bkqq3yk\nJMWR3q3xYxpTXuFj1x4pLXpNjNdLZmpC8we2Unyst8nP3VF/L2K8nnZp3ejIPG3Rr9COAh3xi9SZ\ndNQ/1o6srKIafyN/Rz5/gIKiCvyBAHOW5LKlqJxZP+UCEB/npbLKH/b4UpPjCAScvsSS8mpGDcom\ntoFEtjFhDkVxq2qf+wMBYt2+woB/+2NwrtZjvDv+eG7zFQHQLSZth30AA5INZ+51AskJTq0oJsYb\ntmZffZfDT2XcPnJyUlv8RxKpPneRDqVwWwVFJZUUl1Uxd2kev6wvIj0lnl82FJGaEr9DAtpUUNrq\nxFxZ5adfj25sLakkJyOJ3tnJdZrvfP4ABCC9Wzy75nRr0bk9HhjSN4P4uJiQkufkZVNYtHoxAFmJ\nmS37IEGy4jLZu8dwTho0fqfPISKtp+QunYLP76eqenuyrfYFKCyuAA9s2VpOAFiXt42f124lLsbL\nktUFdE9LZHXutmbPXVRaRUJ83SRZU2tNSYwlEID+vVJJjG+4j27z1nJMvwyKS6vo16MbowZnM2KP\nXu1a45m8bArzchc0uj+/vACAcf3GKDGLdAJK7hJVikor2VZaRX5ROUvXFrJgRT6rNu5ckiwp30ZC\nXAwVVT5iY7z0yUlhcJ90ikor6dujGwfs2ZOUxFji42LqNEm3l+YSckvUJO/GauVZiapxi3QmSu4S\nMZVVPlZv2kZZZTWbC8tYv7mU+DgveOCHnzdTWeUnvVs8FVU+1uWVNHu+pIRYBu+6fbqE/KJyhvTN\nwO8PUO0PsEv3ZPz+AAcN7cXn6z5jYf6iOvdxVOPcxkEKrAvAjMVt/pFrxXidQVxNaS4ht4SSt0jX\nouQu7aKyykfBtgrW55Uwa0kuP68tJL+ootnXbSkqrzNwKzbGS/f0REzfdHz+AMN3784Be/Zs8hw1\nNeBffM7zGQvbNnGGixKyiOwsJXdplUAgwPc2j60llazfXEK3JOfe51WbiklJjKW80qmdbykqb/D1\n8bFehg7IYvfeaZRX+uiTk0JOehLgDCTLdh+3xrzcBRRWbCUjYXutPtKJU6OMRSSclNylQYFAgGXr\ntlJZ5WdjfikfTV9Jz8zkHY6za0KfWDA5IZYRA7uzrbyKI/felSF9M0hObP1XsLm+6ZrEfvfBN7f6\nvUREooGSuwBOMl+9aRtXPvoN29yZyeor3NbwFJ0Ae/TLYP89e9IjI4lYd8KVxPhYuiXFERvrJb2J\niTAa0pLBZM01sWckpLN3j+Eten8RkWim5N7FrcvbxqufLWVpvRp4zaxhhwzvRWJcLL26J3Pg0J6k\ntHDK0WBtmbCDRbqJXUSko1Fy70Lyi8r5at46khJi+Wj6Ksoqqnc4pn+vVP5w0nCy0kKfSzvUpK2E\nLSLSPpTcO7HKKh+//9t/AWfZwOBJXoLtmpPC6UcOZs/+mfTsmdbigV4NDVhriBK2iEj7UHLvpKbO\nXM1bXy2rfV5V7We3XqmszdvG708YRmyMl5yMRHbpXnfBild/eJdpq75v0XtpwJqISMei5N6JVFX7\nmTpzFe9980ud7dedMYq9dsva4fjJy6Ywz9ZtTt+Z+781YE1EpGNRcu8k5v2cx+Pv1k3U++/Rg8sm\nDGv8NQ00p+ckZzEie5iazkVEopiSe5QLBAK8980vTPluZe22044YxK/225V///Ixt333YaOvbag5\nXZOriIhEPyX3KPXu0inMWDePbeXOPekJI53t2elJTPPNZNpM3f8tItJVKblHmVUbi7n3i1eJ22Wl\nu8W5ZS0pIXaHe9A1Ol1EpGtSco8S+UXlTHp+JuWVPhJGbgTAkzeQ8f1+zW8O7F9nrXEREenalNw7\nmPoTwvj8AQqK3UVX9oQEwBNfQWZCBvecfmlkghQRkQ5Nyb2DqEnqNf3kqbFpbC3ZcS73jG4JxMYk\nqa9cREQapeTeQdTclpaVmEm3ir7Y73rX7stOT+RPF+xfu5yqiIhIU5TcI6ymxl5YsZW4QDLr/je6\nzv5nrx9LbIw3QtGJiEg0UnKPkPrN8HH+FLZtyq7df8rYgfzfgf0jFZ6IiEQxJfd2Vj+pZyZksHVd\nd4pWDAZg995pTDpvv0iGKCIiUU7JvZ0F9633SxjM9M+3z/k+bEAW154+KoLRiYhIZ6Dk3o4mL5tC\nfnkBiXRj3f9Gsy5o341n7Y3pF/piLSIiIo1Rcm9HNfevF2/IrrP9uRvGEuPVoDkREWkbSu7tpKbW\n7q9IpHrNHhy1X19OP3IQXq9mlhMRkbal5N5Ovt84HwBffi8G7ZrOmb8aHOGIRESks1JbcDt4/N35\n5BeX19baLzuh8TXWRUREWks19zDKLSjlpmdmANuXZL3ylBFkpiZEMCoREenslNzDpLS8ujaxx/Zd\ngjehnKzETEYNym7mlSIiIq2jZvkwmfjI/2of99itEECLvYiISLtQcg+Dj6avrH38tysOwePxkJWY\nyUmDxkcsJhER6TqU3NtYUWkl7/53BQC/2ndX9a+LiEi7U3JvY898sAiA+FgvZx01pPb+dhERkfai\nAXVtqLyymp9WOYl87P9t5bbv7qtN7OpvFxGR9qLk3ob+8akFIGm3pXyz0Wmaz0rMZO8ew9XfLiIi\n7UbJvY3Y1QXMKfovCSM3QkI5AOP6jVFSFxGRdqfk3kb+9s0bxO2yElBtXUREIkvJvZX8/gAX3/+V\nU2MHxvUdw0mDldRFRCRyNFq+lf7+70W1j5M8qUrsIiIScaq5t0JVtZ85S3IBSEuOJz4uJsIRiYiI\nqOa+0wKBAJc++DUAaYOWsc1XFNmAREREXEruO2nBii21j5N75gG6l11ERDoGJfedUFXt45G35wMw\ndlRvYmK8mjteREQ6DCX3nfDDsu219qQBP2t6WRER6VCU3HfCvKVOM/wxB/Rj/paFgJrkRUSk41By\n3wnzlm0G4KBhvQDUJC8iIh2KknsLBAIBbvr7dCoqfQDsmpMS4YhERER2pOTeAg+//SO5hWUAjNtn\nVzweT4QjEhER2VFYJ7ExxniAp4CRQDlwsbV2RdD+s4FrgWrgJWvt38MZT2v4/H4WrsgH4OpTRzBi\nYHaEIxIREWlYuGvuE4AEa+3BwM3AQ/X2PwAcCRwK/NEYkx7meHbanS/Nrn1ck9gnL5uikfIiItLh\nhDu5HwpMBbDWzgT2q7f/RyATSHKfB8Icz04r3FYJwB9PH1W7bV7uAkAj5UVEpGMJ99zyacDWoOfV\nxhivtdbvPl8EfA9sAyZbazvsHK6l5dX0ykpm6IAsJi+bwrzcBRRWbNVIeRER6XDCndyLgNSg57WJ\n3RgzHDgW6A+UAP80xpxsrX23qRPm5KQ2tTssfvolH38gQK/uKeTkpDJ/xkIKK7bSPSmDA/vuE5GY\nwqmzfZ6OSuUcfirj8FMZd0zhTu7TgPHAO8aYA4EFQfu2AqVAhbU2YIzJxWmib1JeXnFYAm2MPxDg\nhie+AaBbYix5ecX4/AEyEtK548CbIhJTOOXkpHaqz9NRqZzDT2Ucfirj9rEzF1DhTu7vAUcZY6a5\nzy80xpwJpFhrnzfGPAt8a4ypAJYDL4c5nhb7x1Rb+/jcX5vaQXRZic1eh4iIiEREWJO7tTYAXFZv\n89Kg/c8Az4QzhtYqr6wG4LfH7klcrFeD6EREpMPTJDbNmPVTLgD7DMmpU2vXIDoREemolNybULit\novZxUkKsau0iIhIVlNybcO8/5gAwfPfutdtUaxcRkY5Oyb0RPr+fLUVOzX3CYQMiHI2IiEjolNwb\nMXPxJgC8Hg8DdknTVLMiIhI1lNwbMWdJHgCnHjEQ0FSzIiISPZTcG/HDss0AjBnZW6PkRUQkqii5\nN6Cyylf7WKPkRUQk2ii5N6DCTe77Dsmp3aZau4iIRAsl9wasyysBIDZWxSMiItFH2asBy9Y5q9Qm\nxcdEOBIREZGWU3JvgF3t3PK2T1CzvIiISLRQcm/AopVOcu/fS+sUi4hI9FFyr6ekvKr2cWpyfAQj\nERER2TlK7vV8+f1aQE3yIiISvZTc63nvm18AGDogK8KRiIiI7Bwl93pSEmMBOHxkbwDNKS8iIlFH\nyb2eKp+f/j1T8Xo9gOaUFxGR6KPkHmTrtgoqq/zExTnFojnlRUQkGim5B/lpldP8vnFLKaBau4iI\nRCcl9yDVvgCwfZlX0JzyIiISfZTcg0z5biUAcZpTXkREopiyWJDcwjIAdt8lLcKRiIiI7Dwld1dx\naSUAHqBHZrJugRMRkail5O5attZZCc70ywA0mE5ERKKXkrtr9pJcAIb0zdAtcCIiEtWU3F0zFm8C\nYD/TQ7V2ERGJakrurpppZ/vkpAC6BU5ERKKXkjsQCAQoKa9mwC6peDyeSIcjIiLSKkruwI/LtgDU\nzicvIiISzZTcgVc+XQLAqEHZEY5ERESk9WIjHUBHUF7hI7bvEqb7ZzDjOw+FFVvJSEiPdFgiIiI7\nJaTkboxJAQYCC4Bka21JWKNqZ1XVfhK6b2JrZQUZCelkJKRrpLyIiEStZpO7MWYc8AwQAxwMzDfG\nnG2t/SzcwbWHap8ffyBATIyX9IR07j745kiHJCIi0iqh9Ln/GTgUKLTWbgAOBx4Ia1Tt6Gd3ZjoC\ngcgGIiIi0kZCSe5ea+3GmifW2sVhjKfdrVjvJHeNlBcRkc4ilD73tcaY8UDAGJMBXAGsDm9Y7WfD\nllIA4uNiIhyJiIhI2wil5n4pcDbQF1gOjAJ+F86g2tOqTcUAxMborkAREekcQqm5j7TWnhm8wRhz\nEjA5PCG1r5qkrlZ5ERHpLBpN7saY04EE4C5jzJ/qveYWOklyr6r2k5IYq2lnRUSk02iq5p6Gc+tb\nKnBE0PZq4NZwBtWe1m8uodvAZbVLvIqIiES7RpO7tfY54DljzDhr7RftGFO78fud29+qu63Dg5Z4\nFRGRziGUPvcKY8wHQDfAgzOZTX9r7W7hDKw9VPn8AMTFeknTEq8iItJJhDJE/HngfZwLgSeBn4H3\nwhlUe6mq9kc6BBERkTYXSnIvs9a+BHwNFODcBnd4OINqL5sKnHvcA2h2OhER6TxCSe7lxpgswAIH\nWmsDQEp4w2ofa3K3ARCne9xFRKQTCSWrPQT8C/gQOM8Yswj4PqxRtZPl7rzyug1OREQ6k2aTu7X2\nbeBoa20xsC9wDs6sdVFvxuJNAMTHquYuIiKdR1OT2OQA1wL5wMM497eX4dz7PhXo2R4Bhku1z4/P\nvRUuRs3yIiLSiTR1K9w/gWIgG4g3xnwMvAokA9e0Q2xhtSnfGUyXmZoQ4UhERETaVlPJfaC1dqAx\nJhWYDlwOPA48ZK2tDOXkxhgP8BQwEigHLrbWrgjavz/wN/fpRuCcUM/dWvOXbwHgwL16Mr893lBE\nRKSdNNUeXQTg9rVnAadYa//SwuQ7AUiw1h4M3IwzOC/Ys8AF1toxOE39/Vtw7lb5z/drAeid3SkG\n/ouIiNSBeYVjAAAgAElEQVRqKrkH3/y9yVo7fSfOfyhO0sZaOxPYr2aHMWYIsAW41hjzNZBlrf15\nJ96jxQKBAAXFFQAcMnyX9nhLERGRdtNUs3yqMeYwnAuAFPdx7T1j1tr/hXD+NGBr0PNqY4zXWuvH\n6cs/CKe5fwUwxRgzx1r7dQs/Q4vV3N+enZ7I5GVTtGiMiIh0Kk0l97XAXe7jdUGPwanVHxnC+Ytw\nVpWrUZPYwam1L7PWLgUwxkzFqdl/3dQJc3JSm9odkrnL8wHoOWwVX6yeB8Ah/fdtk3N3BiqH9qFy\nDj+VcfipjDumplaFO6KxfS0wDRgPvGOMORBYELRvBdDNGLO7O8juMJx57JuUl1fc6qC+mr2K2L5L\nWFG1EoBx/cZwTJ+j2+Tc0S4nJ1Xl0A5UzuGnMg4/lXH72JkLqFBWhWuN94CjjDHT3OcXGmPOBFKs\ntc8bY34LvGGMAfjOWvtJmOMBoKi0iphdNgJOYtdqcCIi0pmENbm789BfVm/z0qD9XwOjwxlDQyoq\nfQBkaZlXERHphLrc1GyBQIDcwjJivF3uo4uISBfRbM3dGJMJ3A8MBE4FHgD+aK0tCHNsYbFifREA\nfr/WchcRkc4plOrrc8BsoDvOdLQbgNfCGVQ4lVZUA5AQFxPhSERERMIjlOQ+wFr7LOC31lZaa28F\ndg1zXGHz6azVgBaLERGRziuUDFdtjEnHnbHOGDMYiNo27cUrnd6EWCV3ERHppEIZLX87zsQy/Ywx\n7+PMKndROIMKl9Wbtt+PGac13EVEpJMKJbl/DszBuWUtBrjUWrsprFGFSU2T/IF79WRNhGMREREJ\nl1CS+2qcyWhes9bOCHM8YfXDMmeZ17h+lvx8zScvIiKdUyjJfRhwMnCvMaYP8CZOol8W1sjaWLXP\nT5k7Un5FqQVg7x7DIxmSiIhIWDTb8WytLbDWPm+tHQecAxwHLAl7ZG2s3J2Vbsiu6YBmpxMRkc4r\nlElscnAmrzkDyAJeB04Mc1xtbsOWEgAyUhMoiXAsIiIi4RRKs/wPwFvANdba78McT9jMXpILQGpy\nfIQjERERCa9QknvfoDXYo9bX89YDMGpwNkvWRzgYERGRMGo0uRtj5lpr98GZxCYQtMsDBKy1UTN/\na2WVj2qfc32yV/9MUHIXEZFOrNHk7iZ2rLU7DLozxiSEM6i2VlLujJLv26MbHo8nwtGIiIiEV7Oj\n5Y0x0+s99+JMahM1ikoqAditV2qEIxEREQm/pprlvwTGuo+D+9yrgX+HN6y2tfCXLZEOQUREpN00\n1Sx/JIAx5lFr7VXtF1Lbq6hy7nHfs79mpBMRkc6vqZr7eGvtFGCuMea8+vuttf8Ia2RtyK4uBGCX\n7ikRjkRERCT8mroVbn9gCm7TfD0BIGqSe0KcM7A/Ky2qxgGKiIjslKaa5W93/72wZpsxJg3nvvdF\n7RBbmwgEAiz8JR+PB7olxTF52RTyy7VojIiIdF6hTD/7W+AQ4EZgHlBsjHnXWjsp3MG1hc1bywEI\nBMDj8TAvdwGgRWNERKTzavZWOOBy4DrgTOADYDhwTDiDaktrcrcBsO+QnNptWjRGREQ6s1CSO9ba\nfOD/gI+stdVAUlijakMLVzi3wQ3skx7hSERERNpHKMl9kTFmCrA78B9jzFvA7PCG1Xa+/sGZa3b4\n7lm1/e0iIiKdWSjJ/SLgfmC0tbYSeBW4OKxRtZFAIECM15lutnd2ivrbRUSkSwgluccD44HPjTE/\nAEcCUXFPWVFJJT5/gCG7pvPe8o9qR8mrv11ERDqzUJL7E0AyTg3+fCAO+Hs4g2orPy53+tsTE2JV\naxcRkS4jlPXc97XWjgx6PtEYszhcAbWlD779BYDhu3fn6wqNkhcRka4hlJq71xiTUfPEfVwdvpDa\nRrXPT0FxBQBH7N0nwtGIiIi0n1Bq7g8Bs40xNSvBHQ/cF76Q2kZ+kTN5Te/sFLxereEuIiJdR7M1\nd2vtS8CJwApgJXCStfbFMMfVauu3lAKwl1aCExGRLqapVeG8wBXAEOBba+2T7RZVGyivdHoOPB7V\n2kVEpGtpqub+FHAqUALcYoz5U/uE1DbmLMkDoF/PbhGOREREpH01ldwPBw631t6Ec2/7ye0TUusV\nFFcwd6mT3HMykjQznYiIdClNJfdya20AwFq7BWcN96jw8YxVtY+H9M3QPe4iItKlNJXc6ydzfzgD\naUubCpzBdH88fVTtNt3jLiIiXUVTt8L1N8a82Nhza+1F4QurdZat3QqA6ZdR2ySflahR8yIi0jU0\nldyvrff8v+EMpC0lxMVQXukjNsarJnkREelyGk3u1tpX2jOQtrS1pJK+PbaPkleTvIiIdCWhTD8b\nVUrLqwDQ7e0iItJVdbrkvjavBIC05PgIRyIiIhIZocwtjzEmBRgILACSrbUlYY2qFYpLKwFIT4nX\nYDoREemSmq25G2PGAT8CHwC9gJXGmKPDHdjOqvI5d+xty5zPF6v/B2gwnYiIdC2hNMv/GTgUKLTW\nbsCZue6BsEbVCtXVzu3566qWATCu3xgNphMRkS4lpPXcrbUba55YaxeHMZ5W+2b+eueBR6PkRUSk\nawqlz32tMWY8EDDGZOCsFLc6vGHtvNgYr/uvhsuLiEjXFErN/VLgbKAvzpruo4BLwhlUa/y0qgCv\nx0OMt9PdCCAiIhKSZmvu1tpc4Mx2iKXN+ANRs8aNiIhIm2s2uRtjfqGBFeGstbuHJaJW2LK1HICB\nfdIoj3AsIiIikRJKn/vYoMdxwIlAQliiaaXVm4oByE5PYm2EYxEREYmUUJrlV9Xb9IAxZg5wT3Ov\nNcZ4gKeAkUA5cLG1dkUDxz0DbLHW3hJS1I0oragGnAlslNxFRKSrCqVZfkzQUw8wFEgK8fwTgARr\n7cHGmNHAQ+624PNfCgyjDVadq6p2JrDZrVcqi7a29mwiIiLRKZRm+TuDHgeAzcD5IZ7/UGAqgLV2\npjFmv+CdxpiDgP2BZ4A9QjxnozbmlwIQF6uR8iIi0nWFktzfstY+vZPnTwOC69DVxhivtdZvjOkF\n3I5Tkz99J89fR3ml0yxfc6+7iIhIVxRKcr8C2NnkXgSkBj33Wmv97uNTge7Ax8AuQJIxZom19h9N\nnTAnJ7XRfcvWFQEwwvTkvc2eZo+XhqnM2ofKOfxUxuGnMu6YQknua4wxXwIzgbKajdbau0J47TRg\nPPCOMeZAnFXlal7/OPA4gDHmfMA0l9gB8vKKG923frOzWJ2vsgqfP9Ds8bKjnJxUlVk7UDmHn8o4\n/FTG7WNnLqBCSe4zgh63dE7X94CjjDHT3OcXGmPOBFKstc+38FxNqpm4JsbrUbO8iIh0aY0md2PM\n+dbaV6y1dzZ2THOstQHgsnqblzZw3Cs7+x41fO5Sr3v219rtIiLStTVVxb2q3aJoA2WVPkCD6URE\nRDpNJly5wRlMt628KsKRiIiIRFZTfe5DjTE7zCaH0+8e6Ghzy9esFbOXmuVFRKSLayq5LwP+r70C\naSsJ8TFMXjaF/PICshKV6EVEpOtpKrlXNjCvfIe1Jndb7eN5uc4dd3v3GB6pcERERCKmqeQ+rYl9\nHc6GLc7Us7Z6OvkVTq39pEHjIxyViIhI+2t0QJ21dmJ7BtJaq9zlXvMCzjAB1dpFRKSrCmUSm6iw\nLfNHEvqspaiyUrV2ERHp0jrFrXAVVT4qktfija8gIzFdtXYREenSOkXNfebiTQD4KxO4e9zNEY5G\nREQksjpFzX3xynwAUhLjIhyJiIhI5HWK5D7rp1wA4uM6xccRERFplajPhqXl1bWPY7xR/3FERERa\nLeqzYV6hs8R8nBaMERERATpBcq9yl3qNjY36jyIiItImoj4jVlc7yd0T4ThEREQ6iqhP7hvynWln\nPUrvIiIiQCdI7n6/u9arcruIiAjQCZL7+s0lAMR4ld1FRESgEyT38kofAB6PkruIiAh0guQeCDjN\n8qq5i4iIOKI+uc+xeZEOQUREpEOJ6uRe7fNT7d7nroq7iIiII6qT+8qNxQCkp8SD+txFRESAKE/u\n0xdtBGAfkxPhSERERDqOqE7uhcUVABw0tFeEIxEREek4ojq557qLxvTITIpwJCIiIh1HVCf3dXnO\nBDZpyfERjkRERKTjiOrkrnvbRUREdhS1yd0fCODzB9ijX0akQxEREelQoja51yz1GhsTtR9BREQk\nLKI2M67J2xbpEERERDqkqE3uy9cVAep3FxERqS9qk3tcjJPURwzszuRlU8gvL4hwRCIiIh1D1Cb3\nKp+zGlxaSgLzchcAsHeP4ZEMSUREpEOI2uS+zu1zj4t1avBZiZmcNGh8JEMSERHpEKI2ubvLuBMf\nGxPZQERERDqYqE3uPr9zK1xOhqaeFRERCRa1yb1m6tm42Kj9CCIiImERtZmx0p3EJilBzfIiIiLB\noja5e9372+PU5y4iIlJH1Cb36mo/makJkQ5DRESkw4na5J5bWEZsjGanExERqS8qk3u1z+lv37K1\nIsKRiIiIdDxRmdz9fucm970GZEY4EhERkY4nKpO7z03uMR6P5pUXERGpJ7qTe4xX88qLiIjUE9XJ\nveZ2OM0rLyIisl1UJvfS8ioAYrWWu4iIyA6iMrkXlzrJfaV3lvrbRURE6okN58mNMR7gKWAkUA5c\nbK1dEbT/TOAqoApYYK29PJTzVrm3wlUkrwXU3y4iIhIs3DX3CUCCtfZg4GbgoZodxphE4C7gcGvt\nYUCGMSakjvNqd155j0f97SIiIvWFO7kfCkwFsNbOBPYL2lcBHGytrZmJJhandt+s1ZuK2zJGERGR\nTiXcyT0N2Br0vNoY4wWw1gastXkAxpg/ACnW2v+EctKEeKc3waPxdCIiIjsIa587UASkBj33Wmv9\nNU/cPvn7gcHASaGcMCcnleTkeABiY7zEeD3k5KQ28yppCZVn+1A5h5/KOPxUxh1TuJP7NGA88I4x\n5kBgQb39zwJl1toJoZ4wL6+Y4mKn9d7vD+DzB8jLUzN9W8nJSVV5tgOVc/ipjMNPZdw+duYCKtzJ\n/T3gKGPMNPf5he4I+RTge+BC4BtjzFdAAHjUWvtBcyf1BwLhildERCTqhTW5W2sDwGX1Ni9t7fvX\nLByjPncREZEdReUkNn5V3EVERBoVncm9Nrur6i4iIlJfdCZ39bmLiIg0KiqT+89rCiMdgoiISIcV\nlck9IzUBgBitCiciIrKDqEzufo2oExERaVRUJnefboUTERFpVFQmd9XcRUREGheVyd2n0fIiIiKN\nisrkvnrTNkB3uYuIiDQkKpN77Sh5dbqLiIjsICqTO0C3pLhIhyAiItIhRWVyLyiuIC0lPtJhiIiI\ndEhRl9xLy6sBTWAjIiLSmKhL7is2bAWg2uePcCQiIiIdU9Ql98oqJ6kfPKxXhCMRERHpmKIuuecW\nlAGQnKgBdSIiIg2JuuReWuH0uaOJbERERBoUdcl9ba4zgU3/XmkRjkRERKRjirrkXrNoTGqymuVF\nREQaEnXJ3e82x2d0S4hwJCIiIh1T1CX30vIqAGJjdJ+7iIhIQ6Iuuf+yoRivx4NH88qLiIg0KDbS\nAbRUUkIMZRW+SIchIhJWTzzxCNb+RH7+FsrLy+nTZ1cyMjK56677mn3tzz8vZdq0/3HBBRc3uH/m\nzOnk5m7iuOMmtCrGm2++mcsvv5bExEQALrzwLEaMGMU119xQe8wJJ/yaDz74tM57f/HFZ9xyy+2c\ncspx9Oq1C16vF5/PR1lZGTfeOAlj9gDgvffe4fPPpxIb66Sqs846jwMPPBiA4uJinnzyEdauXYPP\n56Nnz15cf/3NpKR0a9Fn2LBhPffeewcAPXv24oYbbiUhYXu37/3330t6egaXXnpFndeVl5fz4IP3\nsXHjBqqqqrjmmuvZY4+9ePHFZ5k9ewYHHzyGc8+9AJ/Px+2338Ldd/+ltlJ67713cP31txAfH75p\n1KMquRcWV1BW4WNgnzQmL5tCfnkBWYmZkQ5LRKTNTZx4NQCffDKF1atX7ZBcmjJ48BAGDx7S6P7R\now9qdXxffPE5w4YNq03sCxb8yO67D+L77+dQVlZGUlKSe2Tjrawej5dHHnmqNnnPmjWDF154hvvv\nf5j333+XhQt/5NFHnyYuLo6ioq1cd91VpKWlsddew7jjjluZMOEkDjtsLABvvfU6DzxwH3fccW+L\nPseTTz7KiSeewrhxRzNlyge8+eZrnH/+bwF4//13+eWX5Ywate8Or3v99X+w++6DmDTpTpYvX8by\n5T+zxx578f33s3n66ReZOPESzj33Aj74YDLHHTehTmvz0Ucfwz//+QoXXvi7FsXaElGV3NfkFgMQ\n4/EwL3cBAHv3GB7JkESkC3jry2XMXpLbpufcf48enHbkoBa/bt6873n66ceJj4/n+ONPJD4+nsmT\n38bn8+HxePjznx9g+fJlvP/+u9x5558544wTGTFiFKtXryIrqzv33ns/U6d+xKpVK5kw4WTuuONW\nevbsydq1a9lzz6Fcd91NbN1ayJ13TqKqqoq+ffsxd+4c3nzzvTpxvPvuv3j22b9T7U498uGH73PE\nEb+iZ89efPzxh5x88mkhfJoAfv/2qcQ3btxAWppzm/PkyW/xxBPPERfn3BmVlpbORRddwnvvvUNW\nVjYFBVtqEzvAqaeeSVlZaZ2zz5//A88993SdxHr66WdzyCGH1T5fufIXRo92WgOGDx/J448/BMDC\nhfNZsmQxxx9/EqtXr9oh8lmzZjBu3NFce+0f6NatG9deeyMAsbFx+P1+YmJiKCnZxqJF8znppFPr\nvHbffQ/gscceUnKv8cs6Z175EYOyme6HrMRMTho0PsJRiYi0r6qqSp599mUAXn31ZR544FESEhJ4\n4IE/M3PmdLKzc2oT2oYN63niiWfJzs7h8ssv5qefFgHU7l+7djWPPPIU8fHxnH76BAoK8nnttZcZ\nM2YsEyacwuzZM5k9e1ad96+oqCA3dxOZmZnk5RVTWlrC/Pk/cNNNt9G//27ccst1TSb34GR77bUT\nqaioYMuWzYwefTBXXOG0WGzdWlib6Gv07t2HTZs2snlzHrvs0nuHcyYnp9TZNmLEKB5//Jkmy3LI\nEMO33/6XY445lm+//S/l5eVs2bKZF198jvvue5Avv/y8wdcVFhZSXFzEQw89ztSpH/HEEw8zadKd\nnHzyadxxx62cdtpZvPbaK5xxxrk8/fTjlJeXccEFvyMzMxOv10tWVndWrFjG7ru3/AIvFFGV3Gu+\nEF4NphORdnTakYN2qpYdLv369a99nJmZwb333kFiYiJr1qxi2LARdY7NyMggOzsHgJycHlRWVtbZ\n36dP39qm9e7ds6moqGTlypX85jfHATBy5N47vH9xcTHp6Rm1zz/99BMCgQA33HA1gQDk529h7tw5\n7LPPfjsMfi4rK63Tp13TLP/ss0+xYcN6MjOdrtaUlG4UFxeTmppae+yaNavp2bMXvXr1Ijd3U53z\nVldX8+WX/+Hoo4+p3RZccw8EAng8nh1q7ldccRUPP3w/H3/8IQceeAjp6el8/fUXFBVt5frrr2LL\nls1UVFTQr19/fvOb7ZXJ9PR0Dj10DACHHDKGf/7zFQDGjBnLmDFj2bBhPbNmTaegIJ/MzEz23vso\n3n77DS655HIAsrK6s3Xr1h3Ktq1EVXKvucc9JyMJtkQ4GBGRCPF4nBudSkq28cILzzJ58kcEAgGu\nuSb0fvmGBNzf2IEDB7Jw4Y8MGjSYhQvn73Bceno6JSUltc+nTPmA++9/hP79dwPgs8+m8u67/2Kf\nffajd+8+tYkenAF1I0aM2uE9f/e7y/jDHy5l8uS3OemkUzn55NN45JEHuOmm24iLi6OgIJ+XX36O\nq6++gezsHDIyMvn22/9y6KGHA/DWW29g7eI6yT2Umvvs2TO59NKJ9O3bjzfffI399x/NhAmncPLJ\npwPbxzwEJ3aAkSNHMX36NIYM2YMffvieAQMG1tn/yisvcMkll7Nw4QK8Xuf/q7y8rHZ/cXERmZlZ\nTcbWGtGV3N3Z6bxRdwOfiEjbS0npxogRI7nkkguIjY0hNTWdzZvz6NVrl6CjttecG7qFOHhbzeOz\nzz6fu+/+E1999QXdu2cTGxtT5zVxcXFkZ2eTn5/P0qXLAWoTO8DYsUfyxBMPk5eXyw033Mrf/vYX\nnn32Kfx+P0OHDufXv/6/BmO76abbmDjxEg4//AhOPvl0fL43uOKK3xEXF4fH4+HCCy9h6NBhANx2\n21387W9/4c03/0lVVRV9+uzKjTdOanEZ9uvXnzvvnER8fDwDBuxe23fekKKiIu6//x7uued+zjnn\nQv7617v5/e8vIjY2lkmT7qo9buHCBfTqtQtZWd3Zf//R3HTTtXz11X+4/vpbAOeCZvPmzey224AW\nxxsqTyCKFmCZ/NXPgZemLOaqU0bwTu5zANx98M0RjqpzyclJJS+vONJhdHoq5/BTGe+86dOnkZmZ\nxR577MmcObN49dWXefTRp+oc88UXn1FeXsyxx54coSij1/Tp0/j5Z8t5510U0vE5Oakt7ouOqpp7\nzbzymsBGRCR8evfuw3333UVMTAx+v5+rr75+h2PGjTuaBx+8h3Hjymv77CU0//nPp9xwwy1hfY+o\nSu41fe5qlhcRCZ/+/Xfj739/sdnj/vrXv6p1ZCfcdttdzR/USlGVJmt6EDRaXkREpHFRldz9apYX\nERFpVlQmd69yu4iISKOiKrkvd2eo8yq7i4iINCqqBtSlJDpzDCfFR1XYIiIt1ppV4Wps3LiBFSuW\nc/DBh/LIIw9yzjkXkJ2dvdMxrV69kk8//YTf/e4yAObOnct5553Hs8++UrtQzZQp77Nhw4baYwAm\nTbqR008/i4qKCu6667ba+7tLSkro27cft93mjMwvKCjgiSceJjd3E4FAgJ49ezFx4tW1k73Mm/c9\nr7zyAj6fj/LycsaPP4ETTjipxZ/j448/5F//ep3U1FSOPfZ4fvOb8fj9fu677y7Wrl1DTEwM119/\nS51798GZ0Obtt98kJiaG446bwPHHn0hpaQk33fRHqqoqueGGSQwYsDvz5n2PtT9xxhnnAM4qfd99\n903tgjTtIaqyZGW1s9RrRmpCM0eKiES31qwKV2POnJls2LCBgw8+lKuvvq7VMT355KN1Jmt5++23\nOeOMc5g8+a06E8g0NS5q//1H1xkt/qc/3cz06d9yyCFjuOWWP3Leeb/loIMOAZzFWW644Rqee+4V\n1qxZzeOPP8wjjzxJWlo6FRXlTJx4Kbvu2pd9990/5M9QUFDASy89zyuvvE5iYhJXXXUZ++13AIsW\nLSA+Pp6nn36BOXNm8dxzT3HPPffXee3f//44b7wxmbi4eM4++xSOOuoYZsyYztix49hrr2F89NG/\nmTjxat599606q9MNHjyEN954lY0bN9KrV6+QY22NqErudlU+AHExUdWbICJRbvKyKbUrUbaVvXsM\n3+mFr5566jEWLVqA3+/jzDPPY8yYsbz99pt8/vlUYmK8DB06gt//fiKvv/4qVVVVDBs2nFdffZlb\nb72Djz/+kLy8XPLzt5Cbu4krr/wj++13AN988zUvvfQ8qamppKR0Y4899qwzycrKlb8QGxtbO9d7\naWkJc+fO5aWX3uDcc09j27ZtdOsWylrq2ydOq6ysJD9/C6mpaSxevIjMzO61iR3ggAMO5N//fo8f\nf/yB2bNncOyxx5OWlg5AQkIijz76FElJyXXO/swzT7JoUd3/q0cf3b4y3Lp1azBmj9pFZozZk8WL\nFzJ27DjGjDkCgI0b15OaWnfRGoCBAwdTXFxMSkq32vnqk5KS2LhxAxUV5SQlJfHJJ1MYN+6o2mVs\na4wdO47Jk9/i8suvDKGMWi+qknthcQUAcXFK7iLSNU2b9g1btuTx5JPPUVFRwSWXXMB+++3PJ59M\n4eab/8TgwUN4//13iImJ4ayzzmXjxo0cdNChvPbaK7XnSExM5MEHH2PGjO94++03GDVqHx577GFe\neOEfpKWlc/vtO878OW/e9wwcOLj2+WefTeWYY44hLi6OsWPHMWXK+7XN0A2pSa6zZ8/iyit/T37+\nFrxeLxMmnMLIkXvz+edT6dNn1x1e17t3bzZt2sDmzXkMHVp3ie/6q8ABzbZw9O3bj+XLf6awsJCE\nhATmzp3NoEHO5/J6vdx9921Mm/YNf/7zgzu8drfdBnDRRWeTkJDIuHFHk5yczOjRBzFr1gw++ujf\nXHTRJTz99GOcf/7FPPDAn+nbt19tmQwcOIhXX32pydjaUlQld38AUpPjeH/5R+SXF5CVmBnpkESk\nCzhp0PgOs7z0ihXLWLx4EVde+XsCgQB+v49NmzYxadIdvPHGa2zcuIHhw0fWWScdti/QAs4ypwA9\nevSksrKSgoJ80tPTa2vFI0bsTUnJtjqv37q1kKys7QudTJnyAampKfzww/zaZVLPOOMc4uMTd1h5\nrqysjISEBMrLy2ub5QsLC7n22itqE3pOTg/++98vd/i8a9as4ZBDDqdXr13YtGljnX0//7wUj8dT\nm5zBqbkHL3bj8Xjq1NzT0zO44oqruPXW60lPz8CYveqscHfbbXezZctmLr30Ql5//V3i4+MBWLp0\nCbNnz+Sdd6aQkJDA7bffwjfffM1hh43lqqv+CMDLLz/PaaedzUsvPcdNN03i6acfZ8OG9eyyS2+y\ns7MpLi7a8T80TKIquQNkdkuobR7bu8fwZo4WEelc+vXbjf33H821196I3+/n5Zefp3fv3jz99BPc\neOMkYmNjueqqy/npp0V4PN4dkryjbp94VlZ3iouLKCoqIi0tjcWLF9C/f91FTTIyMikudmajW7p0\nCXFxsbz22mu1M9RdddVlzJjxHUOGGF5//R9cdNElJCYmsnVrIatXr6Jfv91YsODHoPNlMGnSnVx9\n9RW88sqbjBy5N08++SgzZnzHgQceDMB3331Lbu4mRo4cRXZ2Nn/6080cccQ40tMzKC0t4f7773GX\nUFKQ27wAAAqwSURBVN2e3JuruVdXV7Ns2c88+eRzVFVVcc01VzB8+Eg+/vhDCgsLOOus84iPT8Dj\n8dau5gbQrVsqiYmJxMXF4fV6yczcXh4AmzdvZtOmjQwdOozKygr3YsJDWZmzElxxcXHtcrbtIeqS\ne8+sZNYDWYmZHeZKWkSkvRx++BH88MNcrrjid5SVlXHEEeNISEhkt90GcNllvyU5OZmePXuxxx7/\n3969B0dVnnEc/4YsCZXEC1aoAlqp5ZmqVQtShRYFTS9WoynW6aBWa1SYAJoRlAq1Bu8W6gV1tN7q\niBbRehnEoWqtl+J1rDpeaPuIl3EcW1vHWnGkorn0j/dNutluNtlNdsme/j7/wDlnzznvPrOzT973\nvPu8u5NKDWXlyhWMH29dPddsk90qKytpbj6dBQvmUVNTS3t7e7cheIAJEyZyzTVXAbBmzeq0ld2C\nww47grvvvoOlSy+nvr6BpqZGhg+voa2tlfnzF3Zbw73TuHG7MWPGUVxxxSW0tJzP0qWXs3z5L7j5\n5hsAGDVqR5YtuxyA0aPHMHv2XBYtOp1UKsWmTZtoaJjBpEn75xW/VCpFW1sbjY3HUl1dxdFHH0dN\nTQ3Tp9dxwQVLmDdvFm1tbcyfv5BUKsUDD6yltbU1zqqvp6npRKqqqhg7duduMVix4sau2fANDT+g\nuXkOO+00mnHjwlKw69e/wsSJX8+rrf1RVqvC1S9Y3bHzPm/zXtV6RgzbTivCFYFW0ioNxbn4FOP8\n3HLLTcyc+SNSqRQtLYuZOvVA6uq+0+01CxeexllnLekavleM+66lZTFz5zYzcuSovM8tZFW4spuZ\n9uHQtwANyYuIDKTq6mHMmnU8TU2NXZPkMs2ZcyqrVv16C7SuvG3Y4Oy667iCEnuhyq7nXjtxHVsP\nr1KvvUj0l3hpKM7FpxgXn2JcGonvuafG/oXWyo+3dDNEREQGtbJK7pUjws8gNCQvIiLSs7JK7gBb\nVdRqlryIiEgOZZfcRUREJLei/s7dzCqAq4G9gU+Ak9z9jbTj9cDPgM+Am9z9ht6uOXRoZZFaKyIi\nkgzF7rk3ANXuPgVYBFzaecDMUnG7DpgGzDKzHXq7oJZyFxERya3Yyf2bwP0A7v4MsG/asa8AG9x9\no7t/BjwOHJDrYkOqPylWO0VERBKj2Ml9a+DDtO1WMxvSw7GPgG1yXax98zD22l4z5UVERHIpdm35\njUBt2vYQd29PO5a+YG4t8K9cF7vzuMs0KF8CO+xQ2/uLpN8U5+JTjItPMR6cit1zfwL4HoCZ7Q+8\nnHbsz8BuZratmVURhuSfKnJ7REREEq+o5WfTZsvvFXedAEwEhrv7DWZ2KNBCWH/wRnf/ZdEaIyIi\n8n+irGrLi4iISO9UxEZERCRhlNxFREQSRsldREQkYYr9U7iCFKNsrXTXhxjPBJoJMX7Z3edskYaW\nsd5inPa6a4H33X1xiZtY9vrwOZ4EXBI33wWOdfdPS97QMteHOB8DzAdaCd/JmhxdIDPbD7jY3adn\n7M8r7w3WnvuAl62V/5ErxsOAc4ED3X0qsK2ZaSm+/PUY405mNhvYs9QNS5DeYnwd8GN3P4BQLXOX\nErcvKXqL8zLgIEJV0gVmlrMgmWRnZmcA1wPVGfvzznuDNbkPaNlaySpXjDcDU9x9c9xOEf5al/zk\nijFmNhmYBFxb+qYlRo8xNrPxwPvAfDN7FBjh7hu2RCMTIOdnGXgR2A74XNzWz7AK8xrw/Sz78y/X\nXoTGDYQBLVsrWfUYY3fvcPf3AMzsFEJdgoe2QBvLXY8xNrMvEGo8zCPUeZDC5Pqu+DwwGbiC0OOp\nM7NppW1eYuSKM8B64DlCobL73H1jKRuXFO5+D+HRRqa8895gTe4DWrZWssoVY8yswsyWAQcDM0rd\nuITIFeOjgO2BtcCZwNFmdlyJ25cEuWL8PvCau7/q7q2Enmdmj1P6psc4m9lXgUMJjzy+CIwysyNL\n3sJkyzvvDdbkrrK1xZcrxhCeVVa7e0Pa8Lzkp8cYu/uV7j7J3Q8CLgZWuvuKLdPMspbrc/wGUGNm\n4+L2VEIPU/KXK84fApuAze7eAfyDMEQvhcsczcs77w3KCnUqW1t8uWJMGF57FlgXj3UAy919danb\nWc56+xynve54wDRbPn99+K6YBvw8HnvS3U8rfSvLXx/iPBtoJMzXeR04OY6WSJ7MbBfgNnefEn+1\nVFDeG5TJXURERAo3WIflRUREpEBK7iIiIgmj5C4iIpIwSu4iIiIJo+QuIiKSMEruIiIiCTMoV4UT\nSaL4+9VX+W8hlQpCDYF6d3+nh3NagA53P7cf9z2esOjEW/Gew4DHgDnpVQn7eK1zgGfd/T4zezgW\n4cHMnnf3CYW2MV7jEWAMobRmBaEi1+vAMZ3lkHs472Rgo7vf3p/7iySJkrtIab3T3yRYoNXu3ghd\nBUkeA+YCV+ZzEXdvSduclrZ/oN5To7t3Fk/CzO4iLCW6KMc5U4BHBuj+Iomg5C4yCJjZHoREOxwY\nCVzi7lelHU8BvwL2iLuuiVWrRhJWlRsDtAOL3f33ue7l7h1m9iQwPl77BEICbSdUJ5wHfJpxv6vd\n/UYzuwl4FJgQz33K3SebWTvh++RtYB93f8/MtgNeAXYGvgWcE1/zJqGC2QdZmtf1qNDMagmLvzwd\nt4+K7RxGWH3sJMLSmIcD083sb4TVyfKKh0gS6Zm7SGmNNrPnzeyF+O+CuP8k4Dx334+wLvaFGedN\nISxZOpGQKKfE/csJpSgnAUcA15rZ8FwNMLPtgUOAx81sT2AxMNXd9ybUCF+S5X7fSLtEh7s3A7j7\n5LR97cAdhEVxAI4E7iHUGb8I+Ha83oPA0h6ad32MzV8JtbMfBC6Low2zgEPd/WuEkrJnxMR9L3C2\nu/+ukHiIJJF67iKl1dOw/ALgu2Z2JqF+d2ZCegUYb2b3E1aS+0ncXweYmZ0XtyuBLwEvZZx/hJk9\nT/iDvgK4y91vN7O5wL3u3rnC1HWEHvtFPdyvN7cClxHqkM8EfgrsR+i9PxKT9BDCim3ZnOju6+Ja\n93cCaztrlJvZDKDezIzwSCBb7fK+xkMk0ZTcRQaH3xAS3hpgFfDD9IPu/s/Yy64jLK/5QhzKHwIc\n1JmczWxH4N0s1+965p4hc/SuAki5+wdZ7rd7b2/C3Z8zsxFmti8w2t2fNrPDgXXu3hDbWEX35UMz\n74+7P2VmVwK3mNlehGH4Z4EVhPkCLxHmDGR7P32Jh0iiaVhepLQyl3LsdDBhaHkNcaJa7OUS/18P\n3Orua4FmwozyMcDDxCQXk+9LwFZ5tOdR4HAz2zZun0zoYWe739iMc1vNrPM7JP19rSQ8914Vt58B\nJpvZl+N2C7CsD227NL6XJsL8gDZ3v5Awee4QQq8cQg++s6PS33iIJIKSu0hp9bQM4xLgCTP7I+EZ\n95vArmnH1wL/NrP1hAlmd7n7euBUYH8zexG4jfCzsY/72hh3f5kwBP8HM/sTsA1wFvBbYFOW+6W3\n/17gRTOrzth/K7B3/Bd3/zthOdA7Yjv3ITyGyNQtNu7+aWzL2cBr8V5OmPT3EbBLfOlDwOI4bH9K\nf+IhkhRa8lVERCRh1HMXERFJGCV3ERGRhFFyFxERSRgldxERkYRRchcREUkYJXcREZGEUXIXERFJ\nGCV3ERGRhPkPPTEatbuv1icAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot ROC\n", + "plt.figure()\n", + "for label, metrics in ('Training', metrics_train), ('Testing', metrics_test):\n", + " roc_df = metrics['roc_df']\n", + " plt.plot(roc_df.fpr, roc_df.tpr,\n", + " label='{} (AUROC = {:.1%})'.format(label, metrics['auroc']))\n", + "plt.xlim([0.0, 1.0])\n", + "plt.ylim([0.0, 1.05])\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('Predicting TP53 mutation from gene expression (ROC curves)')\n", + "plt.legend(loc='lower right');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Investigate the predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "predict_df = pd.DataFrame.from_items([\n", + " ('sample_id', X.index),\n", + " ('testing', X.index.isin(X_test.index).astype(int)),\n", + " ('status', y),\n", + " ('decision_function', pipeline.decision_function(X)),\n", + " ('probability', pipeline.predict_proba(X)[:, 1]),\n", + "])\n", + "predict_df['probability_str'] = predict_df['probability'].apply('{:.1%}'.format)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sample_idtestingstatusdecision_functionprobabilityprobability_str
sample_id
TCGA-EI-6513-01TCGA-EI-6513-011021.4353771.0100.0%
TCGA-CK-5912-01TCGA-CK-5912-010019.4633391.0100.0%
TCGA-L5-A4OH-01TCGA-L5-A4OH-010019.0942221.0100.0%
TCGA-CQ-A4CI-01TCGA-CQ-A4CI-010019.0469851.0100.0%
TCGA-G2-A2EF-01TCGA-G2-A2EF-011018.3185751.0100.0%
TCGA-BA-5149-01TCGA-BA-5149-010017.9992661.0100.0%
TCGA-L5-A8NR-01TCGA-L5-A8NR-010017.9028131.0100.0%
TCGA-46-3765-01TCGA-46-3765-010017.7062731.0100.0%
TCGA-CV-6954-01TCGA-CV-6954-010016.7457521.0100.0%
TCGA-IK-7675-01TCGA-IK-7675-011016.7200511.0100.0%
\n", + "
" + ], + "text/plain": [ + " sample_id testing status decision_function \\\n", + "sample_id \n", + "TCGA-EI-6513-01 TCGA-EI-6513-01 1 0 21.435377 \n", + "TCGA-CK-5912-01 TCGA-CK-5912-01 0 0 19.463339 \n", + "TCGA-L5-A4OH-01 TCGA-L5-A4OH-01 0 0 19.094222 \n", + "TCGA-CQ-A4CI-01 TCGA-CQ-A4CI-01 0 0 19.046985 \n", + "TCGA-G2-A2EF-01 TCGA-G2-A2EF-01 1 0 18.318575 \n", + "TCGA-BA-5149-01 TCGA-BA-5149-01 0 0 17.999266 \n", + "TCGA-L5-A8NR-01 TCGA-L5-A8NR-01 0 0 17.902813 \n", + "TCGA-46-3765-01 TCGA-46-3765-01 0 0 17.706273 \n", + "TCGA-CV-6954-01 TCGA-CV-6954-01 0 0 16.745752 \n", + "TCGA-IK-7675-01 TCGA-IK-7675-01 1 0 16.720051 \n", + "\n", + " probability probability_str \n", + "sample_id \n", + "TCGA-EI-6513-01 1.0 100.0% \n", + "TCGA-CK-5912-01 1.0 100.0% \n", + "TCGA-L5-A4OH-01 1.0 100.0% \n", + "TCGA-CQ-A4CI-01 1.0 100.0% \n", + "TCGA-G2-A2EF-01 1.0 100.0% \n", + "TCGA-BA-5149-01 1.0 100.0% \n", + "TCGA-L5-A8NR-01 1.0 100.0% \n", + "TCGA-46-3765-01 1.0 100.0% \n", + "TCGA-CV-6954-01 1.0 100.0% \n", + "TCGA-IK-7675-01 1.0 100.0% " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Top predictions amongst negatives (potential hidden responders)\n", + "predict_df.sort_values('decision_function', ascending=False).query(\"status == 0\").head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFkCAYAAAANC2PrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdgHPWd///n7K66Vn3Vqy175F6xTTcdgyEkJHCkHAkh\nJJAcXMIlFy6X9ruUbxpJ6NxRAmkkhBZD7GCKA3bAuGLZssa2JFtW732lbfP7Q1ohG1taS7s7W96P\n/6TZ3Xl7LPulT1d0XUcIIYQQoc9kdAFCCCGE8I2EthBCCBEmJLSFEEKIMCGhLYQQQoQJCW0hhBAi\nTEhoCyGEEGHCMtULVFVVgIeAJcAwcKumabUnvSYReBW4RdO0Q6qqWoAngFIgFvihpmkb/Fy7EEII\nEVV8aWlfB8RpmnYOcA9w78SLqqquAP4BzJrw7U8DHZqmXQCsAx7wT7lCCCFE9PIltM8DNgFomrYd\nWHnS9VhGg716wvf+DHx7wj2cMytTCCGEEFN2jwMpQO+Er12qqpo0TfMAaJr2Dox3ozP2vaGx71mB\nZ4Fv+a1iIYQQIkr5Etp9gHXC1+OBPRlVVYuA54EHNE3701Sv13VdVxRlqpcJIYQQkeKMQ8+X0N4G\nrAf+oqrqGqByqjeoqpoD/B34sqZpb/pSiKIotLf3+/JSMU02mzVoz/jgsW4OHe/hkhWFJCfEBOWe\noSCYzziayXMOPHnGgWezWad+0Ul8Ce0XgMtUVd029vXnVFW9CUjSNO2xCa+bePLIPUAa8G1VVb8z\ndm2dpmkjZ1yhCDsut4fHXq6iu3+E13c1cP2Fszh/ST4m6UkRQogZUULolC9dfqsLrGD95vzO/hb+\n7+UqZuen0NAxyIjDzbySdO6+cSkmU2QHt7ROgkOec+DJMw48m80akO5xIXym6zp/31GPosBt1y7A\nYjbxv389wMFj3Rxu6EEtTje6RCGECFuyI5rwq+r6HupbB1gx14YtLYF0axzrzykFYGd1u7HFCSFE\nmJPQFn719/fqAbhiVfH499TiNJLiLew81IYndIZjhBAi7EhoC79p7hxkX00n5QWpzC5IHf++xWxi\n+VwbvQMOjjT0TvIJQgghJiOhLfzmtV0NAFx+VtGHrq2syAZgp9YW1JqEECKSSGgLvzl4tJuEODPL\n59o+dG1eSTqJcRZ2ae3SRS6EENMkoS38YmjYRUvXEKW5Kadc1mUxm1g2J4vu/hFqm/oMqFAIEc72\n7NnFlVeupb39g966Rx55gI0bX57xZzscDl5++UUANm58mW3b3p7xZwaKLPkSfnGsZTSIS3NPv8PP\nyopstu1vYWd1G+UTxryFEOHjz28cYUe1f4e5zqrI5oaLy6d8XUxMLD/60ff55S8f9Ov9Ozs72LDh\nJdavv45169b79bP9TUJb+MXRltFNGMryUk77mvmlGSTEmdmltXHjxeXIXvNCiDOxfPlKQOe55/7M\n9dffMP795577E5s3/x1FUbj00su5/vobaWxs4Ic//B4xMTHk5OTS3NzE/fc/ynPP/Zm33nqT4eFh\nUlPT+NGPfsbTTz/JsWN1/OY3j+HxeMjIyOT48XrKy+ewbt16uro6+frX/53HH/8tjz76IPv27cXj\ncXPjjZ9i7dpLeP75Z9m06RXMZhMVFQu46667A/YMJLSFX9Q1j7W0807f0o6xmFhYlsmO6jbauu3k\nZCQGqzwhhJ/ccHG5T63iQFAUha997ZvcdtvNrFlzDgDDw8O8/vpmHn74cXRd56tf/TJnnbWGRx55\ngJtv/jyrV5/Nhg0v0tLSDEBfXy+//vXDAHzta/9GdXUVN998C3V1NXz2s7fyxBP/i6IoXHvtR7n3\n3p+wbt16Nm36G1dffS3vvvtPmpoaefDB/8PhcPDFL36WlStXs3Hjy9x99zepqJjHiy8+h8fjwWQK\nzOizhLbwi6Mt/SQnxJCZEj/p68oLUtlR3UZtU5+EthDijKWkpPBv//Y1fvCD77J48VLs9iFaWpq5\n667b0XWdgYF+GhqOU19/lIULFwGwZMlSNm/eBIDFEsN3v/tfJCQk0NHRhsvlOuV9SkpKcbvdtLS0\n8MYbm/n1rx/ipZeeR9OqufPOL6Hr+tj1Zu655zs888zvaG5uYuHCxQRye3CZiCZmrG/IQUfvMGV5\nKVN2ec/KH+0+r2mS9dpCiOk599zzKS4u4W9/20BsbCyzZs3mvvse4f77H2XdumsoL59DWdlsKiv3\nAbB//+jhlDU1R3j77S18//s/4qtf/Toejwdd11EUBY/nwydOX331tTz88K8pK5tFUlIyxcWlrFix\nkvvue4T77nuEiy++jIKCQjZseJGvf/2/uP/+R9G0avbv3xewP7u0tMWMHRsbz55sEppXcY4Vi1mR\nGeRCiBm566672b17J0lJyaxYsYrbb/88TqeT+fMXYLNl86UvfYUf//j/45lnfkdSUhIWi4XCwiIS\nEhK5445b0XWdzEwbHR3tLFiwCJfLySOPPEBcXNz4PS6++FLuu+9efvKTewE477wL2LNnF1/+8hew\n2+1ccMFaEhISmD17Nnfc8XkSE5Ow2bKZP39hwP7ccspXFAnUqT1/3VbHi2/Xcef1i1k6J2vK1//P\nUzupb+3nwa9eQGyM2e/1GElORgoOec6BF+7P+NVXN7FgwUIKCgp5+eUX2b+/km9+89tGl3UCOeVL\nGOJo81hLe5JJaBPNyk+hrrmP+tYBygtl6ZcQwv9ycnL47nf/i/j4eMxmc8gF9nRJaIsZq2vpI90a\nR1py3NQvBmbnp/D6Lqht6pXQFkIExJIly3jssaeNLsPvZCKamJHu/hF6Bxw+jWd7eSej1TbLuLYQ\nQpwJCW0xI0fH12efflOVk9nSEkhOiKGmUUJbCCHOhIS2mJG6se1Ly3wcz4bRDRJm5afQ2TdM76Aj\nUKUJIUTEkdAWM3KsZQCA0lzfW9owoYtc1msLIYTPJLTFjLR2DZGSGENyQswZvW92/ugENFmvLYTw\nxZ49u7jmmsu5884vceedX+JLX7qF55770xl9xn//9zcAqK09wvvv7wXge9/71ml3RQtFMntcTJvL\n7aG91z6tE7u83ekS2kKEl+ePvMyetkq/fuay7EV8rHzq07VWrDiL733vhwA4nU4++cnrufLKq0lK\nSvbpPj/4wU8B2LLlDTIyMlmyZOn454ULCW0xbe09dnSdae0hnhgfQ15mIrXNfXg8+inP4BZCiIkm\nbgY2ODiI2WzmyJEjPProA5jNZmJj4/jP//wWaWnpfOc732RwcJDh4WFuu+0OzjprNR/5yBU8/vjv\n2bjxZWJiYlDVCr7znXt46qlnuOWWT/HUU38kLi6eP/7xd5jNZtauvZif/vSHOBwO4uLi+MY3vkVq\natopPztYJLTFtLV22QHISU+Y1vvL8lJo7myhtXuIvMwkf5YmhAiQj5Wv96lVHAi7d+/kzju/hKIo\nWCwx/Pu/f53777+Xe+75DrNnl7N16z+47757+fznv0hvby+/+MX9dHd3cfx4/dgnKGRlZbFu3Xoy\nM7OYN28BoBATE8PatZewZcsbXHHFVWzevIlf/eohfvGLH/OJT9zE6tVns2vXDh5++H4+85nPneaz\ng0NCW0xbS9cQALnTPK2rOMfKP/e3cKy1X0JbCDGlid3jXj/5yQ+YPXv0qNAlS5bzyCMPUlY2i2uv\n/Sjf+95/4XK5+cQnbpzkU0db7+vXf4Sf//zHFBeXUFJSSkpKCjU1Nfz2t0/y+98/ha7rWCyWM/xs\n/5PQFtPW1j0a2tM9YrMkZ3Qcqr51gDXz/VaWECKKZGVlUVNzhNmzy9mzZxdFRcXU1tYwNDTET3/6\nKzo7O7j99s9z9tnn4Q1ok8mErp94qldhYRG6Dn/4w2/56Ec/DkBpaSn/8i+fYeHCRdTXH2Xv3j3U\n1h45zWcHh4S2mDZvSzs7bXrd40XZo5PR6lvD91ACIYSxvvGN/+aXv/zpeEv4m9/8NpmZWTzxxP/y\n5puvoes6t956+9irR+fOqGoFDz10H8XFpePfA1i//loef/x/Wb58JQB33HEXP//5/8PhGMHhcHDX\nXf9BYWExTzzxf6f47OCQU76iiL9P7bn7wW2YFPjZHedO+zP+85F/Yh9x8+s7z5vyLO5wEO4nI4UL\nec6BJ8848KZzypes0xbTMuJw090/Qnb69LrGvUpyrAzYnXT3j/ipMiGEiFwS2mJaWrtnNgnNqzhn\ntIv8mHSRCyHElCS0xbS0do8t9/JXaLdIaAshxFQktMW0tI5NQpvuGm2viTPIhRBCTE5CW0xL6wzX\naHulJseRmhRLfZu0tIUQYioS2mJaWrqHMCkKmanxM/6s4hwrXX0jDNidfqhMCCEil4S2mJbWLju2\ntHgs5pn/CBWPdZHLZDQhhJichLY4YwN2JwN254wnoXmV5MgmK0II4QsJbXHGvMu9cma4RturONcb\n2jIZTQghJiOhLc5Y29jpXrkZM5s57mVLjSchziItbSGEmIKEtjhj3j3H/dU9rigKxdnJtHQOMeJw\n++UzhRAiEkloizPm7+5xgJJcKzrI0i8hhJiEhLY4Y+09dixmhfSUOL99ZunYuPbRZgltIYQ4HQlt\nccY6eofJTInH5MdTuUq8oS3bmQohxGlJaIszMuxw0T/kJGuaZ2ifTk5GIvGxZo629Pn1c4UQIpJY\npnqBqqoK8BCwBBgGbtU0rfak1yQCrwK3aJp2yJf3iPDU0TsMQJYfdkKbyKQolORYOXS8h2GHi/jY\nKX80hRAi6vjS0r4OiNM07RzgHuDeiRdVVV0B/AOY5et7RPgKVGjDhMlosl5bCCFOyZfQPg/YBKBp\n2nZg5UnXYxkN6eozeI8IUx09o2u0s1L92z0OEyajybi2EEKcki+hnQL0Tvjaparq+Ps0TXtH07RG\nQPH1PSJ8jbe00/zf0i7NSwHgmIxrCyHEKfkycNgHWCd8bdI0zROA92CzWad6iZihmT7j/mEXABWz\nbKRZ/bfkCyAzM5mEOAsNHYNh/bMQzrWHE3nOgSfPOPT4EtrbgPXAX1RVXQNUBug9tLdLt2gg2WzW\nGT/jxrZ+YmNMOOwjtA87/FTZB4qzkzl0vIf6hm4S4sJvMpo/nrGYmjznwJNnHHjT+aXIly7rF4AR\nVVW3Ab8Avqqq6k2qqt560uv0yd5zxpWJkNTRM0xWagKKH9doT1SaNzoZ7XibTEYTQoiTTdmU0TRN\nB24/6duHTvG6i6d4jwhzQ8NOhkZclBemBuwe45usNPcxtygtYPcRQohwJJPDhM8CudzLqzR3dDLa\nUTnxSwghPkRCW/isvccb2v5f7uWVnZ5AQpyZY7LsSwghPkRCW/iss9e7RjtwLW3vzmgtnUPYR1wB\nu48QQoQjCW3hs/ax7nGbn/cdP9ms/FR0oKapd8rXCiFENJHQFj7rHAvtzAC2tIHxiW5HGiS0hRBi\nIglt4bP2XjsJcWaS4gO7frq8YCy0GyW0hRBiIglt4RNd18fO0Q7cGm2v5IQY8jITqWnqw+PRp36D\nEEJECQlt4ZMBu5MRhxtbAPYcP5XyglRGHG4a2mWTFSGE8JLQFj75YI12YCeheUkXuRBCfJiEtvBJ\nMDZWmUgmowkhxIdJaAufjJ+jHaTu8dyMRJITYqSlLYQQE0hoC58Eu3tcURTKC1Lp6B2mu38kKPcU\nQohQJ6EtfBLs7nGY0EUurW0hhAAktIWPOnrtJMVbgnrG9fhkNBnXFkIIQEJb+EDXdTr7hgO+E9rJ\nSnOtmE0KRxp7gnpfIYQIVRLaYkr9dicOp4fMlOCGdmyMmZJcK/WtA4w43EG9txBChCIJbTGlYO05\nfipqURpuj87hBmltCyGEhLaYUmeQZ45PNK80HYCqY91Bv7cQQoQaCW0xJe/M8WB3jwPMKUzDYlY4\neFRCWwghJLTFlDr7gr/cyysuxszs/FTqW/sZsDuDfn8hhAglEtpiSkaOaQPMK0lHB7R6aW0LIaKb\nhLaYUkfvMHGxgT9H+3RkXFsIIUZJaIspdfYNk5USH/BztE+nLC+FuFizjGsLIaKehLaY1NCwE/uI\ny7CucQCL2YRalEZL15DsQy6EiGoS2mJSHQaPZ3vNKxnrIj/aZWgdQghhJAltManxmeMGLPeayBva\nB2VcWwgRxSS0xaSMnjnuVZidTHJCDAePdaPruqG1CCGEUSS0xaRCpXvcpCjMK0mnu3+E5s4hQ2sR\nQgijSGiLSYVK9zjAgrIMAA7IuLYQIkpJaItJdfYOYzGbsCbFGl0KC0pHQ7uqTkJbCBGdJLTFpDp6\nh8lMicNk0BrtiTJT48nLTKS6vgeX22N0OUIIEXQS2uK0RhxuBuxOQ/YcP50FpRmMON3UNPYaXYoQ\nQgSdhLY4Le94ttGT0Cbyjmvvly5yIUQUktAWp2XkkZynoxanYTYpHJDQFkJEIQltcVofHMmZYHAl\nH4iPtTCnMJVjLf30DzmMLkcIIYJKQlucVqhsrHKy+aUZ6MjuaEKI6COhLU6ro9cOhFb3OMi4thAi\nekloi9Pq7BvGpCikWY1foz1RSY6V5IQYDtR1yZamQoioIqEtTqujd5iMlDjMptD6MTGZPtjStKVL\ntjQVQkSP0PrfWIQMp8tN74AjpNZoT+Q99au6vsfgSoQQIngktMUpdfaNAKE1c3wiOapTCBGNJLTF\nKXX0jE5CC9WWdnZ6AunWOLT6bjwyri2EiBIS2uKUvBurZKWFZmgrikJFcTr9Q06a2geNLkcIIYLC\nMtULVFVVgIeAJcAwcKumabUTrl8DfBtwAk9qmvaYqqoW4CmgFHABX9A07ZD/yxeBMh7aIdo9DqNd\n5O8caOFgfTeF2clGlyOEEAHnS0v7OiBO07RzgHuAe70XxsL5XuBSYC1wm6qqNuAqwKxp2rnA/wA/\n8nPdIsC8a7RDtXscoKIkDYBqGdcWQkQJX0L7PGATgKZp24GVE67NAw5rmtanaZoT2ApcABwCLGOt\n9FRA9psMM529w5hNCmnJcUaXclpZqQnY0uLR6nvweGRcWwgR+XwJ7RRg4jmILlVVTae51s9oSA8A\nZUA18Chw38xLFcHkXaNtMhl/jvZkKorTGRpxUd/Wb3QpQggRcFOOaQN9gHXC1yZN0zwTrqVMuGYF\neoCvAps0TfuWqqoFwJuqqi7UNG3SFrfNZp3ssvADX57xiNNN76CDxeVZIf93smpRPm/va+Z4h52z\nFhUYXQ4gP8fBIs858OQZhx5fQnsbsB74i6qqa4DKCdcOAuWqqqYBQ8D5wM+A+XzQJd4zdh/zVDdq\nb5fWUiDZbFafnnFz5+hs7JTEmJD/OylIHx1z31nVwvkLcwyuxvdnLGZm4nPuGeklzhxHgiV051+E\nI/lZDrzp/FLkS2i/AFymquq2sa8/p6rqTUDS2EzxrwGvAgrwuKZpzaqq/hJ4QlXVt4AY4B5N0+xn\nXJ0whPd0L1sIT0LzSkuOIy8zkUPHe3C5PVjMsooxGjT0NrO5dht72/fTPNgKQHJMEjmJ2VxUdB5L\nbQtRlNAe2hFiOqYMbU3TdOD2k759aML1V4BXTnrPIHCjPwoUwdceBsu9JlKL0tiyt4njbQOU5aVM\n/QYRthxuJxtqN/Hm8a3o6FhMFhZkVqDrOm32Dmp7j1LTW8firAXcqF5HWlyq0SUL4Ve+tLRFlBk/\nkjMMWtoA5YWpbNnbxJGGXgntCHa0r56nq/5E61A7ecnZrCu5lAWZ84i3fLDCoXWonT9WP8e+jgMc\n6j7CbYtuRs0oN7BqIfxL+hLFh3SOt7TDJLQLRltTRxp7p3ilCFfvNu/k3l0P0zrUztrCc/npFd9i\nRc7SEwIbICfRxp3LbuOT6vW4PC7+t/Ip6vsbDKpaCP+T0BYf0hEGa7QnsqUlkJIUy5HGXjlfO8Lo\nus7Lta/y24N/JtYcy78t/QKfmPsR4iynP+PdpJg4t2A1Ny+4iRG3g4f2PkHbUEcQqxYicCS0xYd0\n9A6TmRIf8mu0vRRFYU5BKt39I3SNnU4mwp/T4+Lpg39i49HXyIzP4D9WfJmKjDk+v3959mJumHsd\n/c4BHtz7GAMO2aNehD8JbXECh9NN36AjbMazvWaPdZEfbpTztSPBkHOIB/c+xnstuylNKebrK79C\nblL2GX/OBYVnc2XpJXQMd/Hs4ZcCUKkQwSWhLU7Q2Rde49lecwrHxrUbZFw73HXYO/n5roc43FPL\nUtsi7lr2Rayx0z8Q5uqyyyhLKWZn617ebz/gx0qFCD4JbXGCD47kDI/lXl4luVYsZpNMRgtz+zsO\n8tMd99M61MYlxRfw+YWfItYcM6PPNCkmPj3vE1hMFp7RnmfQOeSnaoUIPgltcYKOMJs57mUxmyjL\ns3K8bQD7iMvocsQZcnvcvFSzkYf3PcmIx8En1ev5WPl6TIp//ovKTcrh6tLL6HP089zhDX75TCGM\nIKEtTtDRE/pHcp5OeWEqug51zX1GlyLOQONAM7/c/QivHnuTrPgM7l5xB+cWrPb7fS4pvoBiayHb\nW3ZxuLvW758vRDBIaIsTdITZbmgTja/XlnHtsOBwO3ipZiP/b8evqes7xorsJfznWXdRbC0MyP3M\nJjM3zL0OgA21m2R5oAhLsiOaOIF3jXZq8unXwYaq8vEZ5BLaocyje9jRsoe/1m6iZ6SXjPh0bpx7\nHQuz5gX83mWpxSzOWsC+jgNUdWksyKwI+D2F8CcJbXGCzl47manxmMLwsAVrYiy5GYnUNPbi8ehh\ns848mtT2HuPZQy9S39+IxWTh8pKLuLL0EuLMwfslcf2sy6nsqGJDzSbmZcz127i5EMEgoS3GjTjd\n9A05Kcye/vIao80uSGFbZQvNnYMU2ML3zxFp7C47L9VsYmvju+jorMxZyrWz1pGZkB70WgqS81iZ\ns5QdrXvY276f5dmLg16DENMloS3Ghdue46cyK280tGub+yS0Q8Sh7hp+c+AP9Dr6yU3M5qaK6ylP\nKzO0pqvKLmNX2/tsqN3EUttCaW2LsCE/qWJcOE9C8yrLHz3lq6653+BKBIwe9PHA3scYcA6xvuxy\nvrnq3w0PbIDsxCzW5K6gbaiDyo4qo8sRwmcS2mJcZ2/4LvfyKrQlYzGbZNmXwU4+6OMrS29lXdml\nxJhCp3PvoqLzAdhyfJvBlQjhOwltMS4SWtoWs4mSnGQa2gZwutxGlxO1/nb0NTYefY2ssYM+5qbP\nNrqkD8lPzkVNL+dQTw2NA81GlyOETyS0xbj2sdAOt8NCTlaWl4Lbo1PfOmB0KVHp/fb9/K1uMxnx\n6dy98svTOugjWC4qOg+Q1rYIHxLaYlxnrx2LOTzXaE/kHdeulS7yoGsebOWpqmeIMcVw26KbSYm1\nGl3SpBZkVpAVn8GO1t0MOOXoThH6JLTFuPFztMNwjfZEs/K8k9EktIPJ7hrm0X2/YcTt4DPzPkGR\nNd/okqZkUkxcWHQuTo+Lfza+Z3Q5QkxJQlsAMOJw0z/kDOtJaF7Z6Qkkxlmoa5LQDqa/1W2m3d7J\npcUXsiJnqdHl+OzsvJXEmWN5q/EdPLrH6HKEmJSEtgCgo887nh2+k9C8FEWhLM9Ka7edAbvT6HKi\nQvNgK1satpEVn8H6ssuNLueMJFgSWJmzjO6RHg511xhdjhCTktAWwAfLvWxp4d/Shg/GtY+2SGs7\n0HRd59lDL+HRPXx87rXEzPD8ayOsyl0OwHstuw2uRIjJSWgL4IPlXuE+c9yrzDuuLV3kAfd++360\n7iPMz1RZmBn4Qz8CYVZqCZnx6extr8ThdhhdjhCnJaEtgMhYoz3ReGjLzmgB5XQ7ee7Iy5gVMx+f\ncy1KmE5iNCkmzspdzojbwfvtB4wuR4jTktAWwMTQjoyWdlpyHBkpcdQ298m5yQG0vWUXXcPdrC08\nl5xEm9HlzMiqnGWAdJGL0CahLQDo6LFjMZtISQrvNdoTleWl0DfooKtvxOhSIpJH9/B6/VtYFDOX\nFF9gdDkzlpOUTYm1iINdh+gdkR4aEZoktAUwtkY7TM/RPh1Zrx1Y+9oP0GbvYFXuClLjUowuxy9W\n5S5HR2dX216jSxHilCS0BcMOFwP2yFijPVGZhHbA6LrOq/VbUFC4NAJa2V4rcpZgUkzskC5yEaIk\ntEVEnKN9KiW5VhQktAPhSE8dx/qOszhrPjkhvLf4mbLGJqOml1Pf30invdvocoT4EAltEXGT0LwS\n4izkZSVR19KPxyOT0fzptfotAFxacqGxhQTAEttCAPZ1yCxyEXoktEXELfeaqCzPyojDTXOnHAbh\nL21DHezvrGZWagmzUkuNLsfvFmfNB0bXnwsRaiS0RcR2j8MHk9HkxC//ead5BwDnF5xtcCWBkRqX\nQllKMUd66uTkLxFyJLQF7WNbmEZiaHu3M5VNVvzD7XGzvXknCZZ4ltoWGV1OwCy2LUBHZ3/HQaNL\nEeIEEtqCjp5hYiwmrBG0Rtur0JaMxWyS7Uz9pKpLo9fRz1k5y4gNwz3GfbUkawEwuqxNiFAioS1o\n77FjS0uIqDXaXhaziZKcZBraB3A43UaXE/beaRrtGj87/yyDKwmsnKRschOzqeo6JHuRi5AioR3l\nBoedDI24sEVg17hXWV4Kbo9OfduA0aWEtT5HP5WdBylMzqfYWmh0OQG32LYAp8fJwa7DRpcixDgJ\n7SjX3uM9kjPyZo57jY9rSxf5jGxv3oVH90R8K9triW20i1xmkYtQIqEd5dp7RmeOR3Joy3amM6fr\nOu8078RisowfrBHpiq2FpMZaOdBZjUf3GF2OEICEdtSLhpZ2dnoCiXEWWfY1A8f7G2kdamNx1nwS\nYxKNLicoTIqJeZkqA85BGvqbjC5HCEBCO+p9ENqRO6atKApleVbauu0M2J1GlxOWdraOHqCxMkpa\n2V7zM1RgdNa8EKFAQjvKeUM7K4Jb2gCzC1IBqGnsNbiS8OPRPexqe58ESwLzM1Wjywmqiow5KChU\ndUpoi9AgoR3l2nvspCbHEhdjNrqUgBoP7SYJ7TNV01NHz0gvy2wLiTFZjC4nqJJiEilNKaaur54h\np93ocoSQ0I5mbo+Hzt6RiB7P9po1NoO8plHGtc+Ut2t8Rc5SgysxxvzMuXh0D1r3EaNLEYIpf21W\nVVUBHgLkBb9qAAAgAElEQVSWAMPArZqm1U64fg3wbcAJPKlp2mNj3/8mcC0QAzykadqT/i9fzERX\n3wgeXccWgQeFnCwpPob8rCRqm/pwezyYTfL7qi/cHjd72itJibUyN3220eUYYn6myit1m6nq1FiW\nHblbt4rw4Mv/XNcBcZqmnQPcA9zrvaCqqmXs60uBtcBtqqraVFW9EDh77D1rgSI/1y38IBomoU00\nOz+FEaebxnY5BMJXB7sOMegcYnn2YkxKdP6iU2wtJCkmkaouDV2XI16FsXz5V3gesAlA07TtwMoJ\n1+YBhzVN69M0zQm8DVwIXAHsV1X1ReCvwMt+rVr4RTQs95pIJqOduZ2t7wOwMkq7xmFs6VfGXHpG\nemkebDW6HBHlfJlVkgJM/F/OpaqqSdM0zymuDYx9LwsoBtYDsxgN7oqpbmSzWX0sW0zXxGc86Bjd\nMGJOaWZUPPtVi/L5zcZqjncOBfTPGynP0uF2sr+zCltSJmfNXoASYnvTB/M5ry5Zws7WvRwbOcqS\nsjlBu6/RIuVnOZL4Etp9wMS/OW9ge6+lTLhmBXqATuCgpmku4JCqqsOqqmZpmtYx2Y3a2+X4xECy\n2awnPONjYzOpY9Cj4tnHKjqJcRaqajoD9uc9+RmHs/fbD2B3DXNe/ho6OkJr3/ZgP+eCmGIAdtTv\n4+zMNUG7r5Ei6Wc5VE3nlyJfuse3AVcBqKq6BqiccO0gUK6qapqqqrHA+cA7wFbgyrH35AOJjAa5\nCCHtPXZiLCZSkyPvSM5TMSkKswpSaOux0zcoJzdNZU/bPgCZfAWkxlkpSM6jpvcoDrds0COM40to\nvwCMqKq6DfgF8FVVVW9SVfXWsZb014BXGQ33xzVNa9Y07RVgj6qq7wEvAXdomiYzOEJMe4+drNT4\niDyS83TKZVzbJ063k8qOKjLj06PiRC9fVKTPweVxUdNbZ3QpIopN2T0+Fra3n/TtQxOuvwK8cor3\nfXPG1YmAGRx2MjjsGp+cFS28f94jTb0sm2szuJrQdbDrEMPuEc4tWB1yY9lGqciYw+vH30LrOsK8\njLlGlyOiVHSu4RB0RMHpXqcyKy8FRZFNVqayu210FGx59mKDKwkd5WllWBQz1V2Hpn6xEAEioR2l\nom25l1dCnIWCrGSONvfhcstxi6fi9Lio7KgiIz6dEqtsseAVa45lVmopxwea6HeE1sQ8ET0ktKNU\ntG2sMtGcolQcLg9HW2Rm7KlUdx1i2D3MMtsi6Ro/SUXG6HIv2dJUGEVCO0p5Qzs7ylraABXF6QBo\n9d0GVxKado/PGpeu8ZONh3bXYYMrEdFKQjtKjR/JGQX7jp9MLUoDoLq+x+BKQo/T7WRfexXpcWmU\npkjX+MmKrAUkWhI42HVYtjQVhpDQjlKt3WNHcsZG9pGcp5KSFEt+VhKHG3pkXPskB8e6xpfnLJau\n8VMwKSbU9HK6R3pos0+6V5QQASGhHYVcbg+dfcPkRGHXuJdanIbDKePaJ9vVNrrX+IrsJQZXErq8\nXeTV0kUuDCChHYU6eofRdchOTzS6FMPIuPaHOcY3VMmQDVUmIePawkgS2lGorXsIgOz0KG5py7j2\nh1R1VjPidrA8W7rGJ5OVkElWfAZadw1uj9vockSUkdCOQq3dYzPHozi0ZVz7w7yzxlfkSNf4VCoy\n5jDsHuZYf4PRpYgoI6EdhdrGQjsnirvHQca1JxpxO6jsqMKWkElhcr7R5YS8irFtTKWLXASbhHYU\n8oZ2tO2GdjIZ1/7Agc5qHB4nK7KXSNe4D+amz0ZB4aCEtggyCe0o1NY9hDUxhsR4X45Tj1wyrv2B\nXa2js8aXS9e4T5JiEim2FlLXd4xh17DR5YgoIqEdZdweDx29w1E9nu0l49qjhl0jHOg8SE5iNvlJ\nuUaXEzYqMubg0T0c7qk1uhQRRSS0o0xn3whuj052WnSPZ3vNK07H4fRE9fna+zuqcHpcMmv8DFVk\nlAOgdck+5CJ4JLSjjCz3OtGCsgwA9td1GVyJcXaNzRqXYzjPTFlqKbGmGA52y7i2CB4J7SjTJsu9\nTlBRkobZpERtaNtdw1R1VpOXlEN+snSNn4kYk4XytFm0DLbSMxK9PTUiuCS0o4yE9oniYy3MKUyl\nvqWfviGH0eUE3b72A7h0t2xbOk2qdJGLIJPQjjKyRvvDFpRloANVUdja3i1d4zMyb2y9tiz9EsEi\noR1lWruHSIyzkBTly70mWliWCcCBKAvtIecQB7sOUZCcR05SttHlhKX8pFyssclo3XJUpwgOCe0o\n4vbotPfYyU5PkFnCExTlJGNNjGH/0a6o+o/3/Y4q3Lqb5dI1Pm2KolCRPoc+Rz9Ngy1GlyOigIR2\nFOnsteNy6zKefRKTorCgLIPeAQcN7YNGlxM0O1v2AHIM50ypcuqXCCIJ7SjS3DEaSNF8JOfpLBxf\n+tVpcCXB0TPSi9Z9hLKUEmyJmUaXE9bmjYW2LP0SwSChHUW8oZ0jLe0PWRBl49o7Wvago7M6b7nR\npYS9tLhUchOzOdJdi9PjMrocEeEktKPIBy1tCe2TpSbFUpydzKHjPYw4IvuMZF3X2d6yC4tilvFs\nP1Ez5uDwODnae8zoUkSEk9COIs2dY6Ed5ad7nc7CWZm43DrVEX7qV8NAE82DrSzMmk9SjAyV+IO3\ni7xaxrVFgEloR5Gm9gHiY82kJMUaXUpIWjRrdFy7sjayx7W3t+wCYHWudI37y5y0WZgUk4xri4CT\n0I4SHo9OU8cgORmJstzrNGYXpJIQZ6aytjNil365PW52tuwlKSaR+Zmq0eVEjHhLPKUpxdT3NTDk\nHDK6HBHBJLSjRFffME6Xh9wM6Q49HYvZxPzSDNp7hmkd2zku0hzsOkS/c4CVOUuxmGSDHX+qyJiD\njo7WXWN0KSKCSWhHiZax071k5vjkFs0anUVeWROZXeTvNO8AYHXuCoMriTzzx7Y0reqsNrgSEckk\ntKNEa9doyzE3U1rak/GG9r4IHNfuc/Szr6OKguQ8iq2FRpcTcUpSikiOSeJAZ3XEDq8I40loR4mW\nrtGWtnSPTy7dGkehLRmtvocRZ2Qt/drevAuP7uGc/FUyryEATIqJeRkqvY5+GgaajC5HRCgJ7Sjh\nDW053Wtqi2Zn4HJ7qD4WOUu/dF3nn83vYTFZWJWzzOhyItbCrAoADkgXuQgQCe0o0do1RLo1joQ4\nmXw0lcXece0I6iI/0lNH21AHy2yLSJS12QEzL2MuCgr7OyS0RWBIaEcBp8tNZ+8wBdnJRpcSFiJx\n6dc/m98D4Nz8VQZXEtmSYhKZlVrC0b56BhzRc/iMCB4J7SjQ1m1HBwpsEtq+iLSlX0NOO3va9pGd\nkEV52iyjy4l4CzPnoaNT1aUZXYqIQBLaUcA7np2fJaHtq0ha+vVey26cHhdn558lE9CCYIGMa4sA\nktCOAt7QLrAlGVxJ+FgUIePauq7zVuM7WBQzZ+edZXQ5USE/KZe0uFSqOjXcnshagSCMJ6EdBbxr\ntPOle9xn3qVf1WG+9EvrPkLrUBvLspdgjZW//2BQFIWFmRUMuezU9dUbXY6IMBLaUaClewiTopCb\nKS3tMxEJS7/eanwHgAsLzza4kuiyMGseAJUdVQZXIiKNhHYUaO0aIistnhiL/HWfiXBf+tU93MO+\n9gMUWQsoTSk2upyooqbPIdYcy772AxGzAkGEBvlfPMINDjvpH3LKTmjTEO5Lv7Y2vouOzgUF58gE\ntCCLNccwP0Olzd5B61Cb0eWICCKhHeFkJ7Tps5hNzC8Jz6VfTo+LbU3vkWhJYGXOEqPLiUqLs+YD\nsK9dusiF/0y5PZaqqgrwELAEGAZu1TStdsL1a4BvA07gSU3THptwLRvYCVyqadohP9cufNDq3XNc\nDgqZlkWzM9l1qJ3Kms6w6q3Y07aPfucAlxRdQKw51uhyotLCrHmYFBPvdxzg8tKLjC5HRAhfWtrX\nAXGapp0D3APc672gqqpl7OtLgbXAbaqq2iZcewSQE+EN1OI93UuO5JyWcFz6pes6bxx/GwWFCwvP\nMbqcqJUUk0h5ahlH++rpGek1uhwRIXwJ7fOATQCapm0HVk64Ng84rGlan6ZpTmArcMHYtZ8DDwNy\n3I2BxrvHw6iVGErCcenXkZ46jvc3ssS2kMyEDKPLiWqLbQsAqOw4aHAlIlL4cnpECjDx10SXqqom\nTdM8p7jWD6Sqqnoz0KZp2mZVVf/L12JsNquvLxU+6ugdJj7WzJyyLECe8XSsXpjLc28eoaV3hJXz\ncqZ8vdHP+CntXQA+tugKw2sJpHD4s12UuIq/HP4r1b3VfGzpZUaXc8bC4RlHG19Cuw+Y+DfnDWzv\ntZQJ16xAD3AnoKuqehmwFHhaVdVrNU2bdBple3u/z4WLqXk8Og1tAxTYkujsHMBms8oznobyvNEf\n/627GyjJmrzHwuhn3GHvZEfj+xRbC8nQbRH79230c/ZdLIXJ+exv1ahvbifBEm90QT4Ln2ccvqbz\nS5Ev3ePbgKsAVFVdA1ROuHYQKFdVNU1V1VhGu8bf0TRtraZpF2madhGwF/jXqQJb+F97rx2X20O+\nTEKbEe/Sr321HSG/9GvL8W3o6FxcdL4s8woRi20LcOluDkgXufADX0L7BWBEVdVtwC+Ar6qqepOq\nqrdqmuYCvga8ymi4P6ZpWvNJ7w/t/+UiWHPH6Hh2nuyENiPhsvTL7rLzTvMOUmNTWJ692OhyxJhl\ntkUA7G6vnOKVQkxtyu5xTdN04PaTvn1owvVXgFcmef/F065OzEhz5+h5vhLaMxcOS7+2Nm5n2D3C\nFSUXYzaZjS5HjMlPziU3MZuqzmqGXSPEW+KMLkmEMdlcJYI1d3qP5AzNkAknC8tGZ2GH6tIvp9vJ\nG8ffJt4cx3kFa4wuR5xkWfZinB4X+zuli1zMjIR2BGvuHMRsUrClyRrtmcpIiafQlhSyS7/ea9lN\nn6Of8wrWkBgjf9+hxjtcsadNusjFzEhoRyhd12nqHCI7PQGLWf6a/WHR7Excbg9afWid+uXRPWyu\n34JFMXNR0XlGlyNOIS8ph5zEbA50VjPidhhdjghj8r95hOoddGAfcZEv49l+M37qV02XwZWcaG/7\nftrtnazKXUFaXKrR5YhTUBSF5dmLcHqc7JdZ5GIGJLQjVHPH2CQ0Gc/2m4mnfoUKXdfZfOxNFBQu\nLbnQ6HLEJJaNd5HvM7gSEc4ktCNUU6cs9/I3i9nE/NIM2nrs4zPzjaZ1H6F+bMvSnESb0eWISeQn\n5ZKTaGO/dJGLGZDQjlDeUJHucf9aWj66Heyewx0GVzJq87EtAFxestbQOsTUFEUZm0Xu5EBntdHl\niDAloR2hvMu9QnVNcbhaUp6FSVHYc7jd6FKo72uguvswc9PLKUkpMroc4QPvLPLd0kUupklCO0I1\ndQ6SmRJPXKxssuFPyQkxzClMpbaxj96BEUNrebV+CyCt7HCSn5RLdkIWBzoO4pAucjENEtoRaGjY\nRe+AQyahBciyOVnowN4jxnWRtw21s7etkqLkfCrS5xhWhzgz3i5yh8fJfukiF9MgoR2BZDw7sJbO\nHZ3wZeS49mv1b6Gjc1nJRXIwSJiRWeRiJiS0I1DT+J7j0tIOhOy0BAptSVQd7WbY4Qr6/XtGetne\nsoushEyWZS8K+v3FzBQm52FLyGS/dJGLaZDQjkDNstwr4JbOseFye9hfG/yNVl49tgWXx8UVJRdh\nUuSfcLiZ2EV+oFMzuhwRZuRffATybqySnyWhHSjL53qXfgV3FnnPSC/bmraTGZ/O6twVQb238J/l\n0kUupklCOwI1dgySkhRLckKM0aVErJIcK+nWOPbVdOJye4J239eO/WOslS3Hb4azwuR8shIyqeyU\nLnJxZiS0I4x9xEVH7zCFNmllB5KiKKyYa2Nw2EVlTXC2Ne0d6WNr07ukx6WxOk9a2eFMURRWZC/B\n4XZQKXuRizMgoR1hGse6xgttyQZXEvnOW5wHwNbK5qDc77X6f+D0uLii9GIsJktQ7ikCZ2XOUgB2\nte41uBIRTiS0I0xD+wAABdLSDrjiHCvFOcm8f6ST3sHAdnH2jPTyduM7pMelsSZvZUDvJYIjPzmX\n/KRcDnRWM+S0G12OCBMS2hGmoW00tKWlHRznLcrDo+u8s78loPfZdPQNnB4X68ouIUZa2RFjZc5S\nXLqbve37jS5FhAkJ7QjT0D6IgswcD5Y1C3KxmBW2Vjaj63pA7tFh72Rb03ayE7JYkyut7EiyQrrI\nxRmS0I4guq7T2D5AdnoCcTEyszgYkhNiWDbHRlPHIHXN/QG5x8u1m/HoHtbPulxmjEeYrIQMylKK\n0bqP0DsSmJ8fEVkktCNIz4CDwWGXdI0H2fiEtH1Nfv/spoEWdrbuoTA5f3z7SxFZVuYsQ0eXNdvC\nJxLaEUQmoRljQWkG6dY4th9sZWjY6dfP3lD7d3R0rpl1hex+FqGW5yxGQWFn6x6jSxFhQP4XiCDe\n0JaWdnCZTAoXLSvAPuLmhS01fvvcQ9017Os4wOzUUhZkVvjtc0VoSYm1oqaXU9dXT4c9+NviivAi\noR1BGtrG1mhnS2gH22Uri0hJiuXFfxzxy/Ivj+7h+cMbALh+zjVykleEkwlpwlcS2hGksX2AWIuJ\n7LQEo0uJOnGxZj5ybinDDjcbttXN+PO2t+zm+EATq3KXU5JS5IcKRShbaluIRTGzU0JbTEFCO0K4\nPR6aOofIy0rCZJJWmRHOX5JPXlYS/9jbRFv30LQ/Z8TtYEPNRmJMMVw760o/VihCVWJMAgsyK2ga\nbKFpILBr/kV4k9COEK1ddlxuj+w5biCL2cRn1s3D7dF54e3pt7Y3H9tCr6OfS4svID0+zY8VilDm\n7SKX1raYjIR2hJBJaKHh3MX5lOZa2V7Vyo7qtjN+f9tQB5vrt5Aam8KlxWv9X6AIWYuy5hFnjmVX\n696AbdQjwp+EdoRoaJeDQkKByaRwy9XziIs18/jLVRxr8X3DDF3X+fOhF3F5XHx87rXEW+ICWKkI\nNbHmWBZnLaRjuIujfceNLkeEKAntCNE43tKW7nGjFdqSuW39fBwuD/c/v8/n2eS7297nYNch5meo\nLLMtCnCVIhStzFkCIGu2xWlJaEeIoy39pCbHkposrbNQsGyujY+eX0ZX3wgPPl/JiMM96evtLjt/\nObyBGJOFG+ZeJ0u8otS8jLkkxSSyq/V93J7Jf2ZEdJLQjgC9AyN0949QlptidCligvXnlLJqXjZH\nGnv5+Z/2MDjJbml/rdlEn6OfK0ouwZaYGcQqRSgxm8yszFlGv3OAqi7N6HJECJLQjgBHx8ZNS3Ot\nBlciJlIUhVvXz2fNghxqGvv4ye/3nLKrvLrrMG81vkNuUg6XllxoQKUilKzJXQHA9uZdBlciQpGE\ndgQYD+08Ce1QYzGbuHX9fC5aXkBD+wA//t0uOnrt49ftrmF+d/BZTIqJm+fdKGdlC4qsBeQn5VLZ\nUcWAc9DockSIkdCOAEeb+wAoke7xkGRSFD592VyuPruEtm47P/7dbpo7R/8zfv7wBrpHerii5GKK\nUwoNrlSEAkVRWJ23ApfuZlfr+0aXI0KMhHaY03Wdoy39ZKTEkZoUa3Q54jQUReH6C2fziYtm090/\nwo9/t5s3Du/mn807KEzO58rSi40uUYSQs3KWYVJM0kUuPkRCO8z1DDjoHXRQKq3ssLBudQk3X6ky\n6OrnubrnMCtm/nX+jVikW1xMkBqXwvyMuRzrPy7bmooTSGiHOW/XuExCCx/nLc6laNUhsDgxtyzA\napLZ4uLDVuetBGB7i7S2xQcktMNcnUxCCzuv1G2m3dlEjmk2vcfyeOC5SpwuWZMrTrQocx5JlkS2\nN+/C5XEZXY4IERLaYe5oi7elLd3j4eBAZzV/P/YGWfEZ/Me5n2H1/FyONPby5MZq2W9anCDGHMPq\nvBX0OwfY277f6HJEiJDQDmO6rnO0uZ+s1HiSE2KMLkdMoXWwjScP/AGLycLnF36axJhEbrmqgtn5\nKbx7oJV/7G0yukQRYs4rWAPA1sZ3Da5EhAoJ7TDW2TfMgN1JaZ60skOd3WXn0cqnsLuG+VTFx8eX\nd8VYzNx+3UKS4i088/phGjtkXa74QE6iDTW9nMM9tTQPthpdjggBU4a2qqqKqqoPq6r6T1VV31BV\nddZJ169RVfU9VVW3qap669j3LKqqPq2q6luqqr6rquo1gfoDRLOjzaPj2WUyCS2keXQPTxz4A61D\n7VxSfAGrcpefcD0jJZ7PrpuHw+Xh0Zf2y/i2OMH5BWcD0toWo3xpaV8HxGmadg5wD3Cv94Kqqpax\nry8F1gK3qapqAz4NdGiadgGwDnjAz3ULoK5FZo6HOl3Xee7wBqo6NeZnqFw3+6pTvm6FamPt0nwa\n2gf585s1Qa5ShLLFWfNJjbWyvWUXI27fTowTkcuX0D4P2ASgadp2YOWEa/OAw5qm9Wma5gS2AhcA\nfwa+PeEepz8pQUxbXZN3JzQJ7VD15vG32dKwjbykHD634JOYlNP/k7vxkjnkZyXx+q4G9h7pCGKV\nIpSZTWbOyV+N3TXMrta9RpcjDOZLaKcAvRO+dqmqajrNtX4gVdO0IU3TBlVVtQLPAt/yS7VinNPl\noaapj0JbMonxMgktFO1u28fzR14hNTaFO5bcQmJMwqSvj4sx86VrF2Axm3jilYP0DIwEqVIR6s7N\nX4VJMfHm8a2yyiDK+bINUx8wsSln0jTNM+HaxFlQVqAHQFXVIuB54AFN0/7kSzE2m7QYfbW/pgOn\ny8Pyiuwzem7yjAPPZrNS1XaYp6ueIc4Sy7fWfoXS9CKf3/v5axfw6AuVPP33Q3z/trMxmeRs7VOJ\npp9lG1bOaVzJ1mPv0eA6xvL8RcG5bxQ943DhS2hvA9YDf1FVdQ1QOeHaQaBcVdU0YIjRrvGfqaqa\nA/wd+LKmaW/6Wkx7e7/PhUe7d/eNLg8qtiX5/NxsNqs84wCz2azsqj3Ir3c/ilv3cNuCm0lypZ3R\nc181N4vt5VnsPdzO7145wLo1JQGsODxF48/yBTnnsvXYezy7byNFMaUBv180PuNgm84vRb50j78A\njKiqug34BfBVVVVvUlX1Vk3TXMDXgFcZDffHNE1rZnTCWhrwbVVV3xybdR53xtWJ09Lqu1GAuUVp\nRpciJmjsa+HBvY8z4nbw2fn/wvxM9Yw/Q1EUPndVBanJsTz/Vi1afXcAKhXhpiA5jwWZFdT01lHb\ne9TocoRBlBAaH9HltzrfOF1uvvzLt8nPTOR7t6zy+X3ym3NgdQ1386u9j9A51M2/qB/j/LGNMaZL\nq+/m58/sJTHewrdvXklW6uRj4tEkWn+WD3fX8qs9j7Aoaz5fWvzZgN4rWp9xMNls1jMe+5LNVcJQ\nTWMfLrcHtTjd6FLEmH7HAA/sfYzOoW4+MmvdjAMbQC1O55OXzqF/yMkDz1Uy4pT129GuPK2MspRi\nKjuqZLOVKCWhHYaqx7pLK4qlazwU2F3DPPj+47QOtXNtxWVcVrLWb5+9dlkBFyzJp75tgCdeOYgn\ndHrGhAEURRn/+dpY95qxxQhDSGiHoer6ntHxbAltwzncTh7d9xuO9zdyTt5ZfGrxR1EU/832VhSF\nT18+l/LCVHZUt/Hk3w7i8UhwR7NFWfMpthawq+19jvUdN7ocEWQS2mHG4XRT29RLUU4ySbI+21Bu\nj5snDvyOwz21LLMt4qaK6/0a2F4Ws4m7Pr6Ysjwr2ypbeOzlKtwez9RvFBHJpJj4aPnVALxw5BVZ\ntx1lJLTDTE1THy63ToWMZxvKo3v47cFnqew4SEX6HG5ecNOku53NVFJ8DHffuIzZBSm8W9XKIy8d\nYMQhY9zRam56OQsyKzjcU8uBzmqjyxFBJKEdZqqPecezJbSNous6fzm8gR2tuylLKeYLi/6VGJMv\nWx7MTGK8ha/dsJS5RWns0tr5n6d30tg+EPD7itB03eyrUFB4seZveHTpeYkWEtph5sDRLhQF5hal\nGl1KVNJ1nZdqNvKPhm3kJ+Vy+5JbiLcEbwuChDgLd9+4lEtXFNLUMcj/PLWTt95vki7SKJSfnMvZ\neStpHmxlW9N2o8sRQSKhHUY6e4epbeqjojhd9hs3yN+Ovsbm+i1kJ2bxlaVfICkmMeg1xFhMfPKy\nuXzlY4uwmE38ZmM1v/jTXtq6h4JeizDW1bMuJ8ESz4tH/kb3cI/R5YggkNAOIzu1NgBWVmQbXEl0\nevXom/ytbjOZ8RncufQ2UuOM3Zd5+Vwb379lFYtmZVJ1tJvvPP4eG989hsstXaXRIi0ulY+Vr2fY\nPcIfteelxyUKSGiHkZ3VbSgKrJhrM7qUqPPG8bd5qXYj6XFp3LXsNtLjQ2O5XWZqPP/+icV88doF\nxMeaeXZLDf/z1E7qmvuMLk0Eydl5Z1GRPocDndXsaN1jdDkiwCS0w0RX3zA1TX2oRWmkJMUaXU5U\nebvxHZ47vIHUWCt3LruNzIQMo0s6gaIorJ6fww++sIbzF+dxvG2AHzy9kz++dhinS2aYRzpFUfhk\nxfXEmmN59tBL9I7IL2yRTEI7TOysHu0aP0u6xoPqn007eEZ7geSYJO5cdhvZiVlGl3RayQkxfO6q\neXzjpmVkpyeyeedxfvTb3bT12I0uTQRYZkIG182+iiGXnScP/AG3R35Zi1QS2mFihzbaNb5cldAO\nljePb+X31c+SZEnkzmW3kZuUY3RJPqkoSef7nzuL8xbncay1n+8/uYNdWrvRZYkAu6DgbJbaFnK4\np5aXajcaXY4IEAntMNDVN0xN42jXeKp0jQecruu8UreZvxz+KymxVu5a/kUKkvOMLuuMxMaYueWq\nedxy1Tzcbg8PvlDJxnePyUSlCKYoCp+edwM5iTZer3+L3W37jC5JBICEdhjYOdZKkq7xwHN73Pzp\n0Ivjs8TvXnFH2AX2ROctzuNb/7qSdGscz26p4febD8ne5REswRLPFxb9K7HmWH538M80DjQbXZLw\nM5diKDcAABofSURBVAntEKfrOv+sbJau8SAYcAxy/97/4+3Gd8hPyuVrK24nKyHT6LJmrCg7mW99\nZgUFtiTe2N3Igy9U4pBjPiNWXlIOn5l3AyNuBw/ufYxOe5fRJQk/ktAOcQePdVPfNsAKNVu6xgPo\neH8jP915H4d7alliW8jdK75MWlzk7DqXkRLPPZ9aQUVxGnsOd/CzZ/bQP+QwuiwRIMuzF/PxOdfS\n6+jngfcfo98h291GCgntELfpvXoA1q0uNriSyOT2uNl09HV+uvN+Ooe7ubrsMm5d+Omgbk0aLInx\nFr56w1LWzM+hprGPH/12l8wsj2AXFZ3H5SUX0TbUwUPvP4HdJX/XkUBCO4Q1tA2wv7aLuUVplOWl\nGF1OxGkaaOHe3Q+zofbvpMRa+cqSW7mq7LKAntZltBiLiVuvmc9Va0po7bbzw6d3otV3G12WCJBr\nZ13JmryV1Pc3cN+e/2PQKVvdhrvAH00kpu3vY63sK6WV7VcDjkFernuVrY3voqNzVs4ybpj7ERIN\n2EfcCCZF4eNrZ5OZEscfXjvMz/64lxsvLufSlYUBOQ9cGEdRFD5V8XEA3m3eya/3PMq/Lf0C1thk\ngysT0yWhHaK6+0d4t6qVvMxEFs8O/8lQoWDIaecfDdt4/fjb2F12chJtfKx8PQuz5hldmiEuWl5I\ngS2Zh17czx9fP0xNUy+fvGwuKYkydyKSmBQTn6r4OBaTha2N7/KrPY9y59IvkBonvXfhSEI7RG3e\ncRy3R+eKVcWYpPUzI/2OAd44/jZvNbzDsHuYREsC18+5hgsLzsFsMhtdnqHmFqXx3c+exUMvVvLe\nwTYqa7u47vwyLlpWgMUcucME0cakmPiXuR8lxmThzeNb+dXuR7gzhPbQF76T0A5BLV1DvLbrOOnW\nOM5eEB67cIWinpFeXq9/i62N7+LwOLHGJHNl6VWcX7CGeEu80eWFjHRrHP/5yeW8uaeRF9+u44+v\nHeaN3Y1csCSPNfNzSbf6Z1Keruv0DTpo6hyiq2+YYYcbh9ONDlgTY0hNiiUzJZ68zCRMJvlF1d8U\nReH68muIMcXw6rE3+eXuR7grBPfSF5NTQmiHJL29vd/oGgyn6zo/f2YvB4918+WPLmSFH9dm22xW\nouEZd9q72Vy/hXea3sOlu0mLS+WykrWck7eKWHNgzyEP92fcN+Tghbdq2VbZjMutoyigFqUxuyCV\nWXkpFOdYSbfGTRmqLreHtm47De0DHG3up665j+P/f3t3HidFeSZw/Nf3dPdczD0DCMPhCyKHiggI\ngreAJN6bmGzUaEx2zebarJu465pks9nsbtYkH43x1hjXnGoSggcqKiDizSHIKzDc0zPDMHdP3137\nR9WMDcI4QPf09Mzz/TCfrqOr+p2H6nmq3nrrfZu66I7EP7EMeW4HtdWFnDy6mNMmljG6Iv9j99pz\nPc7ZZBgGz+56keU7X6DYU8Q/zLjpiF30Sowzr7y84JjPTiVpDzLrNjdw/7ItTBtfytevmpbWhkFD\n/Ut4oPsgK3avZF3DOySNJGV5JVw09lzOqjoDp31gKpWGSoy7QjHe2trE2k0BdtQfOmqUw26jpNDD\niHwPeR4neW4HDruNUCRBOBqnPRilqTVEIqXnNRtQVeqjptRPVamP8mIveW4HHpd5e6KjO0pHMEpj\nS4gd9e0EDn7Uyrmi2MsZk8qZN7Wa6lI/MHTinE0v7nmVp7cvx+/yccv0GxlTOPqQ9RLjzJOkneO6\nwzFue+ANwpE4/37TWZQXe9O6/6H6JWwMNvHc7pW83biepJGk0lfOxWPOY2bljAG/Zz0UYxwMx9gV\n6KQu0MG+pi4OdoQ52B6mPXjkzll8HifVpT6qS/3UlPmprS7gpMoCvJ7+nzgFwzG27GrlHd3Ehh0H\niUTNHtzGjyxk/rQaFs0bR7AznJbfbzhbW/8mT2x9ErfDxc1Tr2NSycTedUPxWB5sJGnnuEef/YBV\nGwJcuWAcS+aMTfv+h9qXsCsaZPnOFaypf4OkkaTGX8UlY8/jtIppWXvWeqjFuC9JwyASTRCJJUgk\nDLweBx63A4c9vbGPxhKs397M6o0BtuxswcCsQp+pKpg3rZqJo4rkUbUTsL5pE49sfgKAG6Zcy4yK\nqcDwOpazRZJ2Dlu1oZ5Hn93K6Ip8br9uZkZa7g6VL2E8GWfVvrU8s+tFQvEwFb4yPj1uEdPKp2S9\nY5ShEuPBqrk9xNpNDazd0khTi1mFXlniY/60auaeWkVx/tDryW4gbG3Zxv2bfkU0EePaSVcyt2aW\nHMsDQJJ2jqqr7+DH//cOHpeD268/k4o0V4v3yPUvoWEYbGrewtPbl9MUasbn9LK49kLOGTln0Dy6\nlesxzhWlpfmsfmcPazYGeFsfIJ5IYrfZmDquhPnTa5g2vlQeWTtGuzv28osNDxGMdXPZ+MVcO3Op\nHMsZJkk7B7UHo/zg0bdo64rwzWumc2pt5jpSyeWEsr8rwJPblqFbt2O32Zk/cg6Lay8g3+XPdtEO\nkcsxziWpcQ6GY7yxpZHVGwPsbjCXFeW7WTp3LOdMr5HkfQwago3ctf5B2iLtfGrSRVxUfb7cesgg\nSdo5pjsc539/t56dgQ6uWjiexbPHZPTzcjGhdEa7WFb3PGvr38TA4JRSxZUTLj3iIyqDQS7GOBcd\nLc57GjtZszHAqo31RGNJKoq9XH7OOGZNrpDk008t4VbuWv8ATd3NzK0+k8+oKwZNTdZQI0k7h4Qi\nce783Xp21Hdw9qlVfHHJ5Iz/UcmlhBJLxnll7xqe2/US4USEKl8FV0xcypRSle2i9SmXYpzLPinO\n7cEof127i1fe208iaTCltoTrLlaUZejW01DTGe3ivs2PsLN1L9PLpnD9lM/idkj3tukmSTtHhCJx\nfvr7DWzf386cKZXcuOSUAekBKhcSimEYbDjwPk9vX05zuAW/y8eS2ouYV3NWTpzt50KMh4L+xvlA\nW4hfr9C8X9eCx+XgygXjOO+MUdI1cD/4i5386OV7+LB1O7WFJ/HladfLQCNpJkk7B7R2Rrj7qY3s\nDHQy+5RKbrp0YBI2DP6EsrdzP09uW8a2tjrsNjsLR53NorHn59ToW4M9xkPFscTZMAxe39zAb17c\nRjAcZ/KYEdy4ZDIlhdKVbV/KywsINLby+Ad/5K3Gdyn3lvL302+kwleW7aINGZK0B7mdgQ7uenIj\nbV1Rzp5axfWLJqX9mda+DNaE0h7pYFnd86wLvI2BwdSyyVw+4VIqfeXZLtoxG6wxHmqOJ87twSiP\nPvMBG3YcxOdx8oVLFLMmD862EYNBT4wNw2BZ3fM8v3slXqeXG6d8jsmlJ2e7eEOCJO1ByjAMXtvU\nwK9XaOLxJFefO4GLZ40e8IYxgy2hRBMxVu5dzYrdK4kkotT4q7hy4tJDemXKNYMtxkPV8cbZMAxe\n3VDPb1/aRjSWZPaUSj5/4cn48jLbJ30uOjzGrwfe5rdbnyRhJLlswmLOH32ONO47QceTtGWUrwxr\n7Yzw2HNb2bDjIF6Pg1sun8a08cO7eimejLO2/k2e2/US7dFO8l1+Lp9wKXOrz8yJ+9Yid9lsNhbO\nGMnkk0Zw/7ItrNvcyId727hpySlMGjMi28Ub1OZUz6TKV8EDmx7j6e3LqWvbxbWTriLfPbgeuxzq\n5Eo7Q+KJJGs2BvjjKzvojpj30W5YNCmrrVezfRWYSCZ4s+Fdntn1Ii3hVtx2FwtHz+OiMQvxOodG\nq95sx3i4SEec44kkf127i7+u3U3SMDj71CquOncCRX5pJQ1Hj3F7pINHNj/BtrY6itwF/O3kv5Hq\n8uMk1eODQNIweHNLI39avZOmthAet4Nrzp3Awhk1Wa9KylZCSRpJ3mvayPKdL9DYfQCnzcH8kXO4\naOy5FLoLBrw8mSRJe2CkM8476tt57DnN3qYuvB4HS+fWcu5pI/G4h3etT18xThpJXtqzimV1z5Mw\nEsyunsll4xdL6/JjJEk7i1o7I7y2KcDqjfUcaAvjsNtYMKOGS+eOHTT9IQ90QgnHw7weeJtX9q6h\nOdyC3WZnTvWZLBp7PiPyigesHANJkvbASHeck0mDV9bv5+lVdQTDcXweJwtm1HDe6aMoLRqercz7\nE+M9nft4/IM/sL8rgNeZx5Lai5g/cvaADYWb6yRpDyDDMNjfHOT9uhY21R1k655WDAPcLjtnTa5k\n6dyxg64jh4FIKIZhsKdzH2sDb/F2w3rCiTAuu5NZVWdwwUkLhvzjIpK0B0am4tzZHeWld/bx8nv7\n6eyOATCyzM/kMSOYMKqIEQUeivI95Oe5sNkwn/c2/2GzgcNuH7BHODOtvzFOJBOsqX+DZXXPE4qH\nKPYUceGYhcytnoXbIQ38+iJJO4PiiSR7GrvYvq+Nbfva2bavjQ7rSw1QW13I/GnVzJpciS9vcJ5l\nZuoPnWEY1AcbWN+0ifcObCIQbASg2FPE2TWzmD9yzrCpNpOkPTAyHedYPMG6zY28+UEj2/a1E40n\n+72tP8+J3+uiyO+mssRHdamPqhJzfPGyoryc6Qv9WGPcGe1ixe6XWbN/HdFkjAJXPrOrZzKn5syc\nfHxzIEjSTqNQJM6O/e29Cbou0EE09tEXd0SBh5NHF3NqbQmnjivNicYr6fpDZxgGB8Ot1LXvQrdu\n58PWHbSEWwFw2p2cWjqZuTVnMrnk5KwPlTnQJGkPjIGMcyyeZGegg90NnbQFI7R3RQmGYhiAYYCB\ngfWPeDxJVzhGV3eMju4oh/95ddhtlBd7exN5VamP6hI/VaU+8r2D66r0eGPcGe1i5d7VrNm/ju54\nCIBxRWOZXj6FaWWnUCEJvFdGkrZSygbcA0wHwsBNWuu6lPVLgduBGPCI1vrBT9rmKLKatFs6wr0J\nevu+dvYe6Or9wtmAkeV+JowqZuKoIiaOKqK0MC/rDcuOVX++hEkjSTyZIJqI0hULEox10x7t4GCo\nheZwC43BJvZ11ROKh3u38Tm9TCqZyIzyqUwpVeQ5h+c9QJCkPVByIc7xRJKm1hANLd0EDgZpaOmm\n4WA3DS3dBMPxj73f63FS4HXh97rwe53ke13481zWqzXfu8y8mvd6nBnrkvVEYxxLxNjQvJnX699C\nt243T26ACm8ZE4rHMaG4ltqiMZR5S4bdyX2PTD2nfRng0VrPVUqdBdxpLUMp5bTmzwBCwGtKqT8D\n8462zWDQHY6xt6mLPU1d7KzvYNu+dg52fJSEXE47E1MS9PiRRfgHaecLhmEQSUQIxcN0x0OE4mFC\n8RDdsZC1rLt3XVLHaQt2EkqEiSVixJNxYsk4cSPeO500+q4GtGGjwlfGKSWKMYWjOXnEeEbmVw/b\nL50QR+N02Kkp81NT5gc+uro0DIPOUKw3gTccNJN6c0eYYChGS1OEeKJ/1fE2G/jzXPjynLidDjwu\nO26XA7fTerXmPU4HLqe9dz7P5cDvdfWeCPScGKSz6t7lcDGzcgYzK2fQGe1iU/MHbGzezLbWHawN\nvMnawJsAeBxuavzVVPkrGJFXTImn2HzNG8EITxEuuS9+iP4k7XnAcwBa6zeUUjNT1k0GtmmtOwCU\nUquBBcCcPrY5LknD4GB7mGTSIGkYJA0weqcNDMNsARqLJ+mOxAlF4uZr2HztCEY50B6iuS1MezB6\nyL7zvS5Om1jWm6jHVBWk5eANxyN0RDusMiYxMEgYCQxr/qPl5nTCSBJNRIkmokQSESLWdDgRIWwl\n3m4rKYd6k3Ko9wy2v9x2F26HG6fdicvhwmv34rI7cdqc5qu1PN/lw+/yU+DOpzSvhDJvCaV5JeQ5\nB0dreCFykc1mo9DnptDn5uTRH3+KwjAMovEkwVCMrlCMYChGMBw3p8M9yz6aD4bj5vLuGNF4gnji\n+G955rkdvYl8RGEeboeNfOuK3mG34bDbsNttZoM7G9iteZvNZs7bzHm7zYbNbs3bzO389lrmFYxj\nfoFBS+wAgcg+miIBDkQa2dWxh50du49cJkceXmcePpcXrzMPr9OLz+nF5XDhtrtw9fw4nOa8w43b\n7sRpd+Gw2bHZ7DhsdqssDuy903YcNgc2bNb7ei56bdgwpx12OyM8xYOqVrU/SbsQaE+Zjyul7Frr\n5BHWdQFFQEEf2xyXXz27ldUbA8e7OWDeTyop9DCltoSTKvIZXZnPmMoCqkp8af9PSRpJvvf6f9EZ\n60rrfgHcDjc+p5dCTwGV/gp81oFsHsx5eA87uH3WutFVZQTb4tLrmBCDmM1mw+Ny4HE5jmtQk0Qy\nSTSWJBpPEo0lzJ+eaes1FEmknADE6ArHe08SukIxAs1Bdjdk+vaDAxhl/tgS2DwhbO6w+WNNOzxh\nRlS5iCQjtIRbD7ktN1AuG7+YC8csHPDPPZr+JO0OzCTcIzX5dmAm7h4FQOsnbHM0tvLyo3e0cet1\ns7i1H4UdTB664n+yXYSPKZDxETKur+NYpI/EWQxH/akDfg1YDKCUmg1sSln3ATBBKVWslHID84HX\ngbV9bCOEEEKI43AsrcenWYtuwGx45rdaii8B7sBsZP2Q1vreI22jtf4wE7+AEEIIMVwMpue0hRBC\nCNEHeU5HCCGEyBGStIUQQogcIUlbCCGEyBGStIUQQogckdXhqJRShcDjmM96u4BvWT2ozQZ+htmf\n+Qta6x9ksZhDglLqcuAqrfXnrPmzgJ8jMU6L4+xvX/STdbz+WGt9rlJqPPAokATe11rfktXCDQFW\nl9QPA2MBN/AfwBYkzmmjlLIDDwAKM6ZfASIcY4yzfaX9LeBFrfVCzEfJ7rGW/xL4jNZ6PnCWUmp6\nlso3JCilfob5JUzt9u1eJMbp1NtHP/BdzP72RRoopf4J849dT/+5dwK3aa0XAHal1KezVrih4/NA\ns9b6HOAS4G4kzum2FDC01vMwB9n6EccR42wn7TuB+6xpFxBSShUAbq31Lmv588AFWSjbUPIa8Hc9\nMxLjjDikj37ghPvbF722A5enzJ+htV5tTT+LHLvp8HvMRAJm/6Jx4HSJc/porf8M3GzNjsHsPfSY\nYzxg1eNKqS8C38QcdtZmvd6gtX5HKVUF/Br4GmZVeUfKpp1A7UCVM5f1EeM/KKUWpLxVYpx+ffXR\nL06A1vpppdSYlEWpNUadmOMdiBOgte6G3hP6PwD/Avwk5S0S5zTQWieVUo9i1sxdDVyYsrpfMR6w\npK21fhjznskhlFJTgSeAf9Rar7EOmsP7M28bmFLmtqPF+AiO1Ge8xPjEHE9/++L4pMZVjt00UUqN\nBp4C7tZa/1Yp9d8pqyXOaaK1vl4pVQG8BXhTVvUrxlmtHldKnYJZLXOt1noFgNa6E4gopWqtxj0X\nA6v72I04RhLjjOirj36RXu8qpc6xphchx+4JU0pVYt4mu1Vr/Str8XsS5/RRSn1eKfUdazYMJIC3\nU2pB+xXjrLYex7wR7wF+biWPNq315Zj3X5/APKlYobV+K4tlHKq+gsQ4nZ4GLlRKvWbN35DNwgxx\n3wYeUEq5MAct+mOWyzMUfBcoBm5XSv0b5q21rwN3SZzT5ingEaXUq5i592vAVuDBY4mx9D0uhBBC\n5Ihstx4XQgghRD9J0hZCCCFyhCRtIYQQIkdI0hZCCCFyhCRtIYQQIkdI0hZCCCFyhCRtIQaIUuoR\npdQXjnGbLyulbu5j/feVUpeeeOkO2edpSqk6pdTKNO7ze0qps63pB5RSp6dr30IMJ9nuXEUI0Qet\n9X2fsP6ODHzspcATWut/TeM+FwArAbTWX0rjfoUYVqRzFSEySCl1J7AEqMccPelBzN6mvoE58MU7\nwC1a66hS6lrMgRqSmP0S32zNG5i9Bz4MTLF2fY/W+iGl1CPAy1rrx5RSN2AOd5u09vtVrXW3Uqoe\ns6eleZjjp1+jtd59lPIusj7HwBwqd3zP/q31Sa21XSl1BzASmAicBDyktf6RUsoD/ML6rCjwQ8xe\nD+8BAsAVwF3AHVrrVUqp24DPYY4qtQK41drf08D7wGlAA3C11lr6vhbDnlSPC5EhSqkrgenAZMwR\nfcYDfuBLwByt9enAAeDbSqkazKFqL9BaT8VM8ItTdjcXKNFan4E5MtDZh33WqcBtwHyt9XSgG+i5\nCq8CXrA+bzXw1aOVWWv9LOZY6/dqrX94hLeknuVPxRxKcDbwHaVUIWbXjH6t9SSrnLcDvwHeBm7U\nWr+fUuZFmFf1p1k/EzG718WK20+sWLRjJnYhhj2pHhcicxYCT1mjfTUrpZ7BPFGeCKyz+tt3Ae8C\nc4A1WusAgNb6OjDvL1v7eh84WSn1HPAM8M+HfdYC4C8pV6P3c+iIb8+n7Gd+mn6/l7XWCeCAUuog\n5rCC5wD3Wb9DI2ZiRykFhw6pCXAe8ButddR6z8PAFzB/v0at9caUMpekqcxC5DRJ2kJkjsGhtVkJ\nzCvo32mtvwGglPJhJu4FpCQ1pVRZ6o601i3W1fQFmNXt7ymlpqS8xc6hSdFGyve7JzHy0Vjrx/I7\n2KwyuQ5bFz7C+2Kpb1BKjQf2HGXfh9f0pZb5SPsWYtiT6nEhMudF4GqllFspNQK4xFp+uVKq3LrS\nvhdzNKW3gFnWOLsAPwU+1bMjpdRS4HGt9TPW+zuBUSmf9QqwVClVbM1/Cavh1wlq5qP76Jf18b6e\npLoKuMYqc4VVLjfmPevDLxJWAp9VSuUppZyYI6P1lFmStBBHIElbiAzRWv8FeBWzevdPwGbMQe6/\nj5mcNmEmpx9b1eJfB1YopTYCQeCRlN09A4SUUpuBdcCTWuvNWPeYtdabgP8EVimltmBWVd9ubXsi\nrU1/CSxUSq3HrMKvP8r7ej7jHqBbKbUBs2HZV7XWQeA54F5rrPGeMi8HlmPe794E7ATuTkOZhRiy\npPW4EEIIkSPknrYQw5BS6nHglJRFNsyr279orb+XlUIJIT6RXGkLIYQQOULuaQshhBA5QpK2EEII\nkSMkaQshhBA5QpK2EEIIkSMkaQshhBA54v8BXx2YHTOye00AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Ignore numpy warning caused by seaborn\n", + "warnings.filterwarnings('ignore', 'using a non-integer number instead of an integer')\n", + "\n", + "ax = sns.distplot(predict_df.query(\"status == 0\").decision_function, hist=False, label='Negatives')\n", + "ax = sns.distplot(predict_df.query(\"status == 1\").decision_function, hist=False, label='Positives')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAFkCAYAAAAAFROsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYZFWB/vHvrdDd1Xk6TM4DnEGGIEEEFQaWXZklreu6\nLrr+QDGArGBYXMA1rhhQUUARUBAEMyO6oCAsGQFJA8wwzJmcOsx0mM6pqu79/XGrwwyT+lbX7fR+\nnsfHrltVt885PdRbJ9xzHc/zEBERkbErMtoFEBERkf1TWIuIiIxxCmsREZExTmEtIiIyximsRURE\nxjiFtYiIyBgXO5gXGWNOBL5lrT3NGHMMcAOQAnqB/2etbTDGfAz4OJAErrHW/ilXhRYREZlMDtiz\nNsZcAfwEyM8c+gFwqbX2dOBe4L+MMdOATwEnAWcC3zTGxHNTZBERkcnlYIbB1wPvGfL4/dbalZmf\nY0AP8DbgaWttylrbBqwDjhrRkoqIiExSBwxra+29+EPe/Y93ABhjTgYuBb4PlAKtQ97WAZSNaElF\nREQmqYOas96TMeb9wFXAP1prm4wxbfiB3a8EaDnQeTzP8xzHCVIEERGR8ShQ6A07rI0x/46/kGyp\ntbY/kJ8Hvm6MyQMSwGJg1YHO5TgODQ3twy3ChFFdXaL6T9L6T+a6g+qv+k/e+ldXlwR637DC2hgT\nAa4HtgD3GmM84Alr7VeNMTcAT+N/a7jaWtsXqEQiIiKym4MKa2vtFuDkzMPKfbzmNuC2ESqXiIiI\nZGhTFBERkTFOYS0iIjLGKaxFRETGOIW1iIjIGKewFhERGeMU1iIiImOcwlpERMakFSte4swzl9LQ\nsHPg2M03/5AHHrg/63P39fVx//1/AOCBB+7nr399Kutz5lKg7UZFRGRy+e2j63lhzc4Dv/AgRKMO\n6bTHCYun8q+nH7Lf18bjeXzjG1/l+9//0Yj87n5NTY3cd98fOfvsf2LZsrNH9Ny5oLAWEZEx69hj\njwc8li//Le99778OHF++/Dc8/PBfcByHM874B9773vdTU7Oda675CvF4nGnTplNXV8uNN97C8uW/\n5cknH6Onp4eysnK+8Y3v8POf/4wtWzZxxx0/xXVdKioq2bZtK4cccijLlp1Nc3MTV1zxaW677S5u\nueVHvPbaK7humve//4MsXfp3/P73v+PBB/9ENBph8eIjuPzyz+W0HRTWIiJyQP96+iEH7AUfrOHs\nDe44Dp/97JV8/OMX8Pa3+xtp9vT08MgjD/PjH9+G53l85jOXcsIJb+fmm3/IBRdcxIknnsR99/2B\n+vo6ANraWrn++h8D8NnPfoo1a1ZzwQUfYdOmDVx44Ue5/fZbcRyHc899D9dd922WLTubBx/8M2ed\ndS7PPfcMtbU1/OhHP6Gvr49PfOJCjj/+RB544H4+97krWbz4cP7wh+W4rkskkruZZYW1iIiMaaWl\npXzqU5/l61//MkcddQzd3V3U19dx+eWX4HkeHR3tbN++ja1bN7NkyZEAHH30MTz88IMAxGJxvvzl\nq0kkEjQ27iSVSu3198ybN590Ok19fT2PPvow119/E3/84++xdg2XXXYxnudlnq/jqqu+xK9/fTd1\ndbUsWXIUnufltA20wExERMa8d7zjXcydO48///k+8vLyWLhwETfccDM33ngLy5adwyGHHMqCBYtY\nufI1AFatWgnAhg3reeqpx/nqV7/BZz5zBa7r4nkejuPguu6bfs9ZZ53Lj398PQsWLKSoqJi5c+dz\n3HHHc8MNN3PDDTdz+ul/z6xZs7nvvj9wxRVXc+ONt2DtGlatei2n9VfPWkRExoXLL/8cL7/8IkVF\nxRx33Nu45JKLSCaTvOUtR1BdPZWLL/4PvvnNr/HrX99NUVERsViM2bPnkEgU8slPfhTP86isrKax\nsYEjjjiSVCrJzTf/kPz8/IHfcfrpZ3DDDdfx7W9fB8A733kKK1a8xKWXfozu7m5OOWUpiUSCRYsW\n8clPXkRhYRHV1VN5y1uW5LTuTq677gfgTdZ7msLkvqcrTO76T+a6g+qv+uem/g899CBHHLGEWbNm\nc//9f2DVqpVceeUXR/z3ZKO6usQJ8j71rEVEZEKYNm0aX/7y1RQUFBCNRsdcUGdDYS0iIhPC0Ue/\nlZ/+9OejXYyc0AIzERGRMU5hLSIiMsYprEVERMY4hbWIiMgYp7AWEZExacWKlzjnnH/gsssu5rLL\nLubiiz/C8uW/GdY5/vu/Pw/Axo3refXVVwD4yle+sM9dzMYqrQYXEZED+v36+1mxc+WInCsacUi7\nHm+deiT/fMj+73h13HEn8JWvXANAMpnkAx94L2eeeRZFRcUH9bu+/vVrAXj88UepqKjk6KOPGTjf\neKKwFhGRMWvoxl2dnZ1Eo1HWr1/PLbf8kGg0Sl5ePv/1X1+gvHwKX/rSlXR2dtLT08PHP/5JTjjh\nRM47793cdtsveOCB+4nH4xizmC996SruvPPXfOQjH+TOO39Ffn4Bv/rV3USjUZYuPZ1rr72Gvr4+\n8vPz+fznv0BZWflezx0mhbWIiBzQPx9y9gF7wQdrODuYvfzyi1x22cU4jkMsFufTn76CG2+8jquu\n+hKLFh3C008/wQ03XMdFF32C1tZWvve9G9m1q5lt27ZmzuBQVVXFsmVnU1lZxeGHHwE4xONxli79\nOx5//FHe/e5/5OGHH+QHP7iJ733vm7zvfedz4okn8dJLL/DjH9/Ihz704X2cOzwKaxERGbOGDoP3\n+/a3v86iRf7tOo8++lhuvvlHLFiwkHPPfQ9f+crVpFJp3ve+9+/nrH5v/eyzz+O73/0mc+fOY968\n+ZSWlrJhwwbuuutn/OIXd+J5HrFYbJjnzg2FtYiIjCtVVVVs2LCeRYsOYcWKl5gzZy4bN26gq6uL\na6/9AU1NjVxyyUWcdNI76Q/mSCSC5+1+l63Zs+fgefDLX97Fe97zLwDMnz+ff/u3D7FkyZFs3bqZ\nV15ZwcaN6/dx7vAorEVEZFz5/Of/m+9//9qBnu+VV36Rysoqbr/9Vh577P/wPI+PfvSSzKv9+2YY\ns5ibbrqBuXPnDxwDOPvsc7nttls59tjjAfjkJy/nu9/9Fn19vfT19XH55f/J7Nlzuf32n+zl3OHR\nXbdGke68M3nrP5nrDqq/6j956x/0rlu6zlpERGSMU1iLiIiMcQprERGRMU5hLSIiMsYprEVERMY4\nhbWIiMgYp7AWEREZ4xTWIiIiY5zCWkREZIxTWIuIiIxxCmsREZExTmEtIiIyximsRURExjiFtYiI\nyBinsBYRERnjYgfzImPMicC3rLWnGWMWAXcALrDKWntp5jUfAz4OJIFrrLV/yk2RRURkvLLN6/nt\nxtf4lwX/RMRRf/FgHbCljDFXAD8B8jOHrgOuttaeCkSMMecZY6YBnwJOAs4EvmmMieeozCIiMk69\nsGMFT2x+juaeXaNdlHHlYL7WrAfeM+TxcdbapzI/PwD8PfA24Glrbcpa2wasA44a0ZKKiMi453ou\nAA7OKJdkfDlgWFtr7wVSQw4NbeF2oBQoAVqHHO8AykaigCIiMnH0h7WGwIfnoOas9+AO+bkEaAHa\n8EN7z+MHVF1dEqAIE4fqP3nrP5nrDqr/ZK1/PD8KQFVVCRWJydkGQQQJ65eNMadYa58ElgGPAi8A\n1xhj8oAEsBhYdTAna2hoD1CEiaG6ukT1n6T1n8x1B9V/Mte/u6cPgF3NXaTzoqNcmvAF/ZIWJKz/\nE/hJZgHZG8A91lrPGHMD8DT+MPnV1tq+QCUSEZEJy+sfBteVw8NyUGFtrd0CnJz5eR2wdC+vuQ24\nbSQLJyIiE4vreQBEHC0wGw59tRERkdB4mWVPjhaYDYtaS0REQtPfs9alW8OjsBYRkdDo0q1g1Foi\nIhIaT3PWgSisRUQkNOpZB6PWEhGR0Lhou9EgFNYiIhIa1/NwHAdHw+DDorAWEZHQeJ6rIfAA1GIi\nIhIa1/MU1gGoxUREJDQu6lkHoRYTEZHQuJ6ry7YCUFiLiEhoPA2DB6IWExGR0LgorINQi4mISGg8\nzyWia6yHTWEtIiKhcXXpViBqMRERCY0u3QpGLSYiIqHRavBgFNYiIhIaTwvMAlGLiYhIaDRnHYxa\nTEREQqOwDkYtJiIiofE3RdGc9XAprEVEJDTaGzwYtZiIiIRGw+DBqMVERCQ02hs8GLWYiIiExt8b\nXHPWw6WwFhGR0Liei6Oe9bCpxUREJDRaDR6MwlpERELheZ52MAtILSYiIqFwPRdAYR2AWkxERELh\n4gEK6yDUYiIiEgpvoGetOevhUliLiEgoNAwenFpMRERC4XoaBg9KLSYiIqFwUc86KLWYiIiEwlPP\nOjC1mIiIhGJwGFwLzIZLYS0iIqHwMsPgjsJ62BTWIiISCq0GD04tJiIiodBq8ODUYiIiEgr1rINT\ni4mISCg8hXVgajEREQnF4N7gWmA2XAprEREJhYbBg4sFeZMxJgbcCcwHUsDHgDRwB+ACq6y1l45M\nEUVEZCLQArPggrbYPwJRa+07gP8BvgFcB1xtrT0ViBhjzhuhMoqIyASgOevggrbYWiBmjHGAMiAJ\nHGutfSrz/APAGSNQPhERmSAG9wbXnPVwBRoGBzqABcAaoBI4B3jXkOfb8UNcREQE0N7g2Qga1p8B\nHrTWfsEYMwt4HMgb8nwJ0HIwJ6quLglYhIlB9Z+89Z/MdQfVfzLWv4kE4If1ZKx/NoKGdTP+0Df4\noRwDVhhjTrXWPgEsAx49mBM1NLQHLML4V11dovpP0vpP5rqD6j9Z69+8qwPw9wafjPWH4F/Sgob1\nD4DbjTFPAnHgSuAl4KfGmDjwBnBPwHOLiMgE5Ol+1oEFCmtrbSfw/r08tTSr0oiIyISlS7eCU4uJ\niEgoBjdF0Wrw4VJYi4hIKLSDWXBqMRERCYWHhsGDUouJiEgo1LMOTi0mIiKhGFxgpjnr4VJYi4hI\nKNSzDk4tJiIiodCcdXBqMRERCYV61sGpxUREJBS6kUdwajEREQmFNkUJTmEtIiKhcLU3eGBqMRER\nCYUu3QpOYS0iIqHwtMAsMLWYiIiEQnfdCk4tJiIiodCcdXBqMRERCYVWgwensBYRkVDoOuvg1GIi\nIhIKhXVwajEREQmF5qyDU4uJiEgoNGcdnMJaRERCoUu3glOLiYhIKPo3RXHUsx42hbWIiITC1f2s\nA1OLiYhIKHQ/6+DUYiIiEgqFdXBqMRERCYWusw5OLSYiIqEYvM5aC8yGS2EtIiKh0KVbwanFREQk\nFJqzDk4tJiIiodCcdXBqMRERCYXmrINTWIuISCjUsw5OLSYiIqHQnHVwajEREQmFq73BA1NYi4hI\nKLQ3eHBqMRERCYWnYfDA1GIiIhKKwU1RNAw+XAprEREJhRaYBacWExGRUAxeZ63oGS61mIiIhELX\nWQenFhMRkVAorINTi4mISCgG56y1wGy4FNYiIhIKzVkHpxYTEZFQuJ6noA4oFvSNxpgrgXOBOHAT\n8CRwB+ACq6y1l45EAUVEZGLwPBcHDYEHEegrjjHmVOAka+3JwFJgLnAdcLW19lQgYow5b8RKKSIi\n457fs1ZYBxF0POLdwCpjzB+A/wXuB4611j6Vef4B4IwRKJ+IiEwQLi6OhsEDCToMXoXfmz4bWIgf\n2EP/Au1A2cGcqLq6JGARJgbVf/LWfzLXHVT/yVj/SNQhGvGjYjLWPxtBw7oJeMNamwLWGmN6gNlD\nni8BWg7mRA0N7QGLMP5VV5eo/pO0/pO57qD6T9b6J5MpHM8fBp+M9YfgX1KCjkc8DZwJYIyZCRQB\nj2TmsgGWAU/t470iIjIJuZ6r1eABBepZW2v/ZIx5lzHmecABLgE2Az81xsSBN4B7RqyUIiIy7vlz\n1lpgFkTgS7estVfu5fDS4EUREZGJzPM8ItreIxC1moiIhEKbogSnVhMRkVD4c9YaBg9CYS0iIqHw\n8HSddUBqNRERCYV61sEprEVEJBSu5+IodgJRq4mISCg87Q0emMJaRERC4aJNUYJSq4mISChczyWi\nW2QGorAWEZFQuJ5WgwelVhMRkVB42hs8MLWaiIiEwkULzIJSWIuISCg8z9OlWwGp1UREJOc8z8NT\nzzowhbWIiOSc67kAmrMOSK0mIiI55+IBCuug1GoiIpJzXqZn7WgYPBCFtYiI5NzAMLg2RQlEYS0i\nIjnnev4wuDZFCUatJiIiOeeiBWbZUKuJiEjOeZmetYbBg1FYi4hIzunSreyo1UREJOdcrQbPisJa\nRERyztN11llRq4mISM65A3PWip0g1GoiIpJzg3PWGgYPQmEtIiI5N7iDmWInCLWaiIjknPYGz45a\nTUREck7D4NlRWIuISM4NbDeqTVECUViLiEjOedoUJStqNRERybn+vcG1KUowCmsREck5XWedHbWa\niIjknPYGz45aTUREcm7grlsaBg9EYS0iIjnnoU1RsqFWExGRnNOcdXbUaiIiknPaFCU7CmsREck5\nLTDLjlpNRERyrv9+1rrOOhiFtYiI5Jx61tlRq4mISM5pb/DsKKxFRCTn1LPOjlpNRERyztNq8KzE\nsnmzMWYq8CJwBpAG7gBcYJW19tKsSyciIhOCi66zzkbgVjPGxICbga7MoeuAq621pwIRY8x5I1A+\nERGZAPqHwbWDWTDZtNp3gR8DtYADHGutfSrz3AP4vW0RERHtDZ6lQMPgxpgLgZ3W2oeNMVdnDg8N\n/nag7GDOVV1dEqQIE4bqP3nrP5nrDqr/ZKt/UVseAGWlhcDkq3+2gs5ZfxhwjTF/DxwN/ByoHvJ8\nCdByMCdqaGgPWITxr7q6RPWfpPWfzHUH1X8y1r+1vRuAzvZeYPJ+9gf9khJoGNxae6q19jRr7WnA\nK8CHgAeMMadkXrIMeGqfJxARkUnF05x1VrJaDb6H/wR+YoyJA28A94zguUVEZBwbuOuWwjqQrMPa\nWnv6kIdLsz2fiIhMPC66zjob+oojIiI5N3DplrYbDURhLSIiOedpGDwrajUREck5bYqSHbWaiIjk\nnKtNUbKisBYRkZwbWGCm2AlErSYiIjmn7Uazo7AWEZGc06Yo2VGriYhIzg3cIlNhHYhaTUREcq5/\nNbiGwYNRWIuISM4NhLViJxC1moiI5Fz/AjPNWQejVhMRkZzT3uDZUViLiEjO9W+Kor3Bg1FYi4hI\nzg0uMFPsBKFWExGRnPO0GjwrCmsREck5V3fdyopaTUREcs6jf85asROEWk1ERHJOm6JkR2EtIiI5\npwVm2VGriYhIzmlv8Oyo1UREJOcG77qlYfAgFNYiIpJzA6vBFTuBqNVERCTntMAsOwprERHJucG9\nwRU7QajVREQk5zztDZ4VhbWIiOScLt3KjlpNRERyztVq8KworEVEJOe0N3h21GoiIpJzHp6COgtq\nORERyTnPc4locVlgCmsREck51/Nw1LMOTC0nIiI55+JqQ5QsKKxFRCTnXM/VnHUW1HIiIpJznudp\nX/AsqOVERCTnXM/VNdZZUFiLiEjO+XPWipyg1HIiIpJzrudpX/AsKKxFRCTnPC0wy4paTkREcs71\nPF26lQWFtYiI5JyHNkXJhlpORERyzr/OWj3roBTWIiKSc67n6jrrLKjlREQk5zxPd93KRizIm4wx\nMeB2YD6QB1wDrAbuAFxglbX20pEpooiIjHcu2hQlG0G/5vw70GitPQU4E/ghcB1wtbX2VCBijDlv\nhMooIiLjnPYGz07Qlvst8MXMz1EgBRxrrX0qc+wB4IwsyyYiIhOEq73BsxJoGNxa2wVgjCkBfgd8\nAfjukJe0A2VZl05ERCYET6vBsxIorAGMMXOA3wM/tNb+2hhz7ZCnS4CWgzlPdXVJ0CJMCKr/5K3/\nZK47qP6Trf4uHnl58YF6T7b6ZyvoArNpwF+AS621j2UOrzDGnGKtfRJYBjx6MOdqaGgPUoQJobq6\nRPWfpPWfzHUH1X8y1t/1XFJJl4aG9klZ/35Bv6QE7VlfBZQDXzTGfAnwgMuBG40xceAN4J6A5xYR\nkQnE9VwADYNnIeic9aeBT+/lqaVZlWYSeWNzM9/77at8+ExDRWnBaBdHRCRnPM8D0GrwLKjlRskj\nL9fw+sYmfv/kxtEuiohITrkorLOllhsFqbTL6s3NADy7qp5tOztGuUQiIrnjZYbBtSlKcArrUbCx\nto2evjTzZ5TiAcuf2DDaRRIRyZmBOWtFTmBquVGwcmMTAB9adjiL55bz2oYm1mzZNcqlEhHJDVdz\n1llTy42CVRubiUYcjjykiveddggAy59U71pEJiYXrQbPlsI6ZG2dfWzZ0c5hc8pJ5MdYMKOUw+dN\nYUNNG509ydEunojIiOtfDe6oZx2YWi5kr2/yF5YtWVAxcGzBjFIAtu7QQjMRmXgG56zVsw5KYR2y\nlZv8+eolCysHjs2dVgzAlvrJuaOPiExsg5uiKHKCUsuFyPU8Xt/UTFlxHrOriwBIppPMmeb/vHWn\nwlpEJh53YBhcPeugFNYh2r6zg/auJEsWVOA4Dn3pJF969ls80/QYBXlR9axFZELqSfcAEI/ER7kk\n45fCOkTbG/w56YWZOerWnjba+trZ3lHH3KnF1Dd30ZtMj2YRRURGXF1HPQAziqaNcknGL4V1iGob\nuwCYWeUPe3f0+Y+7kl3MnV6C5/m9bxGRiWR7Rx0As4pnjHJJxi+FdYjqmjoBmFHph3Vnn/+4K9XN\nvGn+bdO27NBQuIhMLDWdCutsKaxDVNvYSXEiTkmhP2+zW886E9ZbFdYiMsHUtNdRnl9GUbxwtIsy\nbimsQ5JMpdnZ0s3MysKBFZH9Yd2T7mVqRT6xaIQtutZaRCaQjr5OWvvamK1edVYU1iGpb+7G8wbn\nqwE6M2ENkHT7mF1dRE1DB6m0OxpFFBEZcTWZ+eqZCuusKKxDMjBfPSSsOzJz1gCdKX8oPJX2qG3s\nfNP7RUTGo5qOWgD1rLOksA5JfwDPrNx7z7or2c286f3z1hoKF5GJoSZz2das4pmjXJLxTWEdkoGw\n3q1nPSSsU12D245qkZmITBA1HbXEIzGqE5UHfrHsk8I6JLVNXSTyo5QX5w0c60wODnd3JbuZU11M\nNOKwub5tNIooIjKi0m6aus4dzCiaTjQSHe3ijGsK6xCk0i47mruYWVm02964Hb1De9bd5MWjzK4u\nZku9FpmJyPi3o6uBlJfW9dUjQGEdgoaWbtKut9viMoCO5NA5a//nhbNKSaVdtmknMxEZ52q1c9mI\nUViHYG+Ly8BfYOZk7u/aleoGBvcN31DTGmIJRURGnrYZHTkK6xAMLi4b3L3H9Vy6kt2U55cB0Jnp\nWS+a5T/eWKt5axEZ33Z2NwK6gcdIUFiHoLYpcwOPIT3r/p50/wrJ/sfTpiQoKogprEVk3GvpaSUW\niVEcLzrwi2W/FNYhqG3sJC8eoaKsYOBY/xx1RcEUHBy6kn5YO47Dgpml7Gzppq2rb1TKKyIyElp6\nWynPK91tYa0Eo7DOsVTapa7JXwkeGfIPtr8nXZRXSCJWQFdqcLHZopn+UPgm9a5FZJxKu2na+top\ny0z1SXYU1jm2bad/GdaCzMKxfv096cJYIYWxxMBjgPKqXoj1skFhLSLjVFtfOx4eUwoU1iNBYZ1j\n/XPPC2fuGdZ+T7oonqAwXjjQs+5L93Fv/V3kLXidjbVaES4i41NLr//5VZZfeoBXysFQWOdYf+C+\nKaxT/T3rBIWxBEk3RTKdpKG7iaSbJFbcwaa6NlzPC73MIiLZaun1OypT8stHuSQTg8I6xzbWtpHI\njzGtYvebrncOGQbvvyF7V6qbxu4mALxYN919SeqauhARGW/Usx5ZCusc6uhOsmNXNwtnlOy2uAwY\nGPYujCdIxBOAf611QyascTycvG7s1l2hlllEJIikmxrYLwIGw7pcC8xGhMI6h/rnqxfMfPM/1qEL\nzIpigz3rgbAGIgVd/HVlXQglFRHJzj1r/8hXn72WnlQvMBjWUxTWI0JhnUP989WLZr55GGjg0q14\ngsJMz7or2UVj12BYz57lsKmuna26ZaaIjHFrWzbQmeqittPvYLT0tuLgUJpXMsolmxgU1jm0sa6/\nZ723sPb3BS+IFVC4j5711On+4rKnXlXvWkTGrr50Hw2ZjkZNRz3gLzArzSvWrTFHiMI6RzzPY1Nt\nG9XlBZQW5r3p+a5kN4XxAiJOZKBn3d7Xwa7eFqYXTvVflN9FWXEez75ez3M1L7G+ZVOYVRAROSh1\nnTvw8DsXtR11eJ5HS2+rNkQZQQrrHNm5q5vOnhQL9zJfDX4vujjP3y+3MOaH9faOWlzPZV7pHBKx\nAhq7m3jnkTPoSndxl/0Nv1qzPLTyi4jsS0dfJzu6GgYe13TU7fZzZ6qLlJvSfPUIUljnyMBmKDP2\nftlCZ7KLojx/+Lv/0q0tbdsA/+Ye1YlKGnuaeeeR04gU+yvC67t20t6n+1yLyOi6c/Wv+dbzPxhY\nKNsf1hEnQk1HPbt6+i/bUliPFIV1jqyv2ftmKOBf4pB0k2/qWffPV1clKqlKVJJyU+QVpqieNXg5\nxAYNhYvIKOpJ9WJ3rafPTbK2ZQMAtR31ODi8peIwetI9bGrdAkC5rrEeMQrrHOjqSfLc6npKi/KY\nN/3NKyH7v43296wL47tvmFJdWEl1ogrwA7yoanA1+PPb1gD+nPgdr/+K+zY8mJM6iIiAH8Rrd60f\neLy+ZSNpLw3AG81r8TyPms46qhIVLCibB8DqZv9zStdYj5zYaBdgInr05Rq6e9OcddJ8YtE3fx/q\n3xClP6zzInGiTnTgP4D+njX4w0s7euqpzpvGzp6dvFpn2bqjHS/Rwgs7VhB1opw2510DvfS0659D\nKzBFJFuu53LLyjtp7tnF/5x8FeX5ZbzRvHbg+TVNa2nta6Mz2cWh5QuZVTwDANvsh3t5fhmtnX08\n/VotG2vb2Fzfjut6nHnyfN5uqikrzh+Veo1H6lmPsN5kmodf3EYiP8Zpb52119f096yLM2HtOM7A\nivBErICiWCHViQoAnq9/GddzOWb64UzLn4mXaOPrdz/Lz59/BIC0l+bFHa/4P7tpvvXC9fxgxS14\n2lNcRPa4eacGAAATPElEQVTD8zxcz93t2KbWLbzetGbg8dpdG2jsbsL1XJ6tfRGAN5rXkRfNY0nl\nYhp7mnm14XUAZhbPYGbRdAD63CQAq9d1cfWtz7L8iY2sWNeI63qk0i6/eXgt/3nTM/z6kXUkU7uX\nQfZOPesR9tSrtbR3JTn75Pkk8vfevP096/6wBn8ns/a+DqoTlTiOQ3WhPwy+tX07AIeULyDiRPjL\nlhqKp7ZT564DN44TTfHo5uc4ceqJrGh6mdpO/xrHVxtf55jqJbieyx2v/wqAC484n4ij72ciE9mu\nnhZikRglecUDx56pfQHHcThpxvGA/8X+pldvpzfdy+Vv/QTxaJyOvk5+lDl21QmfZmbxdJ6u/Rvg\nLxx7pu553jb9rezo2smSysNZUrWYVU1reHTbUwDMKp5BRcEUCqL59KT9Xczue6KewngB559xKMeb\nqUwpyae3L83KLbu455F1PPTCNtZtb+GS85ZQVZ4IuaXGlxENa2OMA9wEHA30AB+11m4cyd8xlqXS\nLg8+v5W8WIQzjp+9z9cN9qyLBo71LzLrH/4uzSshHomRdFM4OCwsm4/jRGALVBy2mbrOJLHmRfRG\n2mgq38Flt95PgXkFJxoBx+PetQ+yqPhQXmp8kZd2vgrAgrJ5nDbnnaTdNL9cs5yedA8XvOV88qJx\nwB9y70p2c+iUhQPlqumoY1dPC0uqDh/ZxhKRfero6yQ/lk88sv+PaNdzcXBwMvceqOvcwXdevJG8\nSB7/dcJlTCkoZ2Xjan6x5neA/7lyRKXhse1Ps2bXOgAe3PIo5yx8N/dveojuzM6Ky9fdx4VHnM9r\nDa8zs2g680vn8kzd89y74c8AHF5xGIdXHAYwcPOhaQVTeXVDE25XCeT34qVinHLkXP751IW77TWR\nnxdl2ckLOHLeFO56yPLMqnq+escLnH/GoZx0xPSBusjuRrpn/U9AvrX2ZGPMicB1mWMT3o5dXdz9\nF0tzWy9nHD97rxuh9OvcY84a/G1HYTCsI06EykQl9Z07mFU8g8J4goVl83BwqOvcAcAV7z6H1XXb\n+OP25STMa6RjXaTq50EsSWNVLZ/7zd3EZq3H8eI4jsNy+ydeesGhtWgVzXF/Fee2J27lqOg/0OJs\n49XUw7ikObrwXRxRdDz1qU08set+0qQ4Yco7OLnqFKKRCKvbXqM12cxJU99BcX4hUcdhS+dmGnsb\nOWHqsSTi+UQiDr1uD12pTqYVVg/8B9jS20pjdzMLMwtRwF/Asq29hqOqjyARKxh43fb2WsyUQ4hn\nvky09raztX0bZsoh5EX99vU8j550D4nY8L+Ve55HR7KT4njRAT8gelK95EfzRuyDpC+dxPVcjXSM\nM73pPt5osswpmUVlZqqqO9XDysbVzC6eycxifxi4tbeNx7Y9zaLy+SypPBzHcehIdvLk9meYWzKb\npVUnDJzvmdrnmVE0jcUVhwLwQv0KfrHmd1QUTOETR13ItMJq0m6aVxtfpzheyKHli3Ach02tW/jZ\n67+kOF7MR5Z8gKJ4IbeuvJPedB+96T5+uupuLlryQe5+43fEHH8Ny11v/IZPHHkh9298iOJ4EfFI\nnIe2PMb0wqk8XfMc0wqrmZJfzppd67jj9V+R9tK8Y+aJLCjzw3rFztcAWFiyELcnQWmsnLZUCxEv\nxtd+sprePpf4vASxaVBdNIUL37F4n22ZnxflorMO57A55fzi4bX89P43eHxFLeefcSgL9nHJ62Q2\n0mH9TuBBAGvt34wxx4/w+cekB/+2ld8/uZFU2mXJggrOfceC/b5+YDX4kFXgicyWo/2rwP2f/bA+\npHxB5jUFzCmZydb2GmYXz2R2yUymFU3l4fo/00UH8UiMj7/jPLY2tPBg613E51oA8uuOoS/p4s1d\nwcaiP+PEk7gdZXjpGE1lW/i/XfcQKdkFbhTS+bzKU7y8fS2RKTvBdfBSBbyw6688u3YzkUQHkWL/\nsrRn6p4nWbuIaFkT0XJ/g4Q/rn2IZM0iIolOotXbcaJp3I4y3Ib5RIt34VRuh4gLvUXEmg/BTTTj\nlm0DB5xV+ZS0H44b76KzcD2e4xJzE1T3LSEZ6aQpbvGcNDG3gOrkEhwiNMfW0hNtoTBdzZS+QwGH\n1thmuqONJFLVlPbNJ+rl0x1voC/aQoFbTrE7lWSki8b4GrojzRS4ZUxzF1PoVNDBTjojTSS8MkqZ\njuskqecNWp06CilnOospdMpo8rawixoKKWdqZAGFlNHMdlq8OhJOCVXOXPKcfOrc9ex0N5NwSpgV\nPYziyBS2p9ewI72ZfKeQubHDqYrNojG9nZ2preRHEkyPLaAiOo0Ot5V2twkHh0S0hDwnn263g263\nnXgkjymxagoiCbb1bWBb71qiToz5BYuZVTCPllQj9b3bcHCYnj+HqvgMutwOWlNNeB6UxSpIRIrY\n0bedmt5NpL00M/PnMz1vDp3pdhqT9aS9FJXxaZTFqtiVbKC+bytJr5ep8dlMy5tD2kvRnm4l5SUp\njpRSFC2lPdVCY6qeXrebithUpsSm0pluY2dyO91eJ5WxGVTGptMZbWZt22u0p1uYmbeAeXmLcfFo\nTNXSlW6jNFpBeXQqDg5dXgcpr4/CSCnFThm9Xje70jvpdNsojVQwJTaNjnQL25KW5tQOqmOzmBM3\n5EcSNKd20um2UBwppzw6DZc0Tala2twmiiMVVEb8BVE7U9todXdSEqmkKjob13PZnlpLo7uNUqeK\nac6hpL00W7wVJOnG8SJMw5DwytjuvELS6QFgGodRRDlbWEGaJA9vhQrmMsWZyRZvBSn84eF7Xn+E\nKe4cNnsr6MP/8l7JHBJOGdu9VUSIsqOrgW88dz1zOYY6LN1krl32ZlLqTWe7swLP8Wjq2cXXnvk+\nCa+cjkgj01NLSDrdbG7bwFf++l3STpKZvScAHrXei3zvxZvwHJeqtrfhuHF2lT7OHav9qbLUtsNp\nSiVg6nq/5+1GePRRDzdVQ2RGGW5BK15vAV+5eTXgEJ9XQmxaC6nOIsoK83nrMVXkT3d4uH4b1UVT\nDvjZ6TgOpxw9k7fMm8JvHlvPS7aB/7nzRaaWJ3jLggrmTy+hOBGnOBFn4czSvS7YnSxGOqxLIfMv\nypcyxkSstRN2BUHadbn3qY0UJWJ84IzDON5UH7D31ZuZzynJLwJ/HcbA/HV1pmc99OdF5YPhv6h8\nAVvbazhxxnEAxCMxjp92DE/WPMu7Zp3E0fNmc/S82exafSx/q3+JJZWHc/Fp/wrALSt7Wdm4msr8\nSi5Y8hG8dIRfbvo5O6gjP1LAmdP/hbiX4C9Nv6O9YgdxJ58TC88mzyvm+Z776Kiu8cvlLSLhTmF7\n7BWcef5ilKLUdArSFTTnWfIWrAYgmi4k3lNGT1EdkWJ/KD6SLCLWVUFf0XZSM/xjTk8ptFfjVmyh\nrdxfLOf2JnBbq/Aqa6kreCFzrAC3ZSZeVS11+f5iF8918DrK6CxqoCsxuKOS15dPR952OvK279b2\nbWxlZ/9rPAe3fQrdRS1sif1t9z+SAzW8OvDQ7SylM9HGxshzZHZVxEvF6Im10+xu2+2tLV49dawb\nfG9vAcl4M+3es4PHuovozutmrfcCa5MvDNTFiXjsSG1huLxUHJxuVqafY2Xnc7s9t6nHHvj9HuxM\n1rz5ie43H6rt2wydBy7Txt43H6vp2zD4O10HL1nANtaxrW/d7i9MHvj8e+P2FlDHJupSB7MfwUb2\n+K00ubVsTq0ccr4Eu/LqaXH8tSBeOkq6YS6R8kbqC94Axz+W2jmfaFkjOwr9ldJeKk6q1hApa6S5\nbCvN3lb/dXWHEilppqFsKw1sxUtHSO1YQKSojaaybeBtw+0ppGftsUSKWvEWvM7GyPN4nkO6YQ5O\nXjet5bW0OrV4yTz61h+Nk99NfN5qOqI7SbdWsMnOhIhH/uE7oaiddGslG6w/CpBnKomWNZFuqWLj\n2mLAIb5oBrHKOtItVdRsLCTiOESZR3TaZryWGTQ2pYlGXCIF83BnvEYiOYNDF1ZRWhjHK4UVqW0c\nN3cRF53zdhzHYWNrnIfrh3e3raryBJe+50hWb27mkZe2s2brLh5fsfu/x7NOmsd7T1100OecaJyR\nXDVsjPke8Ky19p7M463W2rkj9gtEREQmoZEeU/gr8I8Axpi3Ayv3/3IRERE5kJEeBr8X+HtjzF8z\njz88wucXERGZdEZ0GFxERERG3uRdWiciIjJOKKxFRETGOIW1iIjIGKewFhERGeNCvZGHMaYAuBuY\nCrQBF1hrm/Z4zWeA9+NvPfFna+3/hFnGkXag/dKNMecAX8TfBuJn1tqfjkpBc+Qg6n8+cDl+/Vda\naz85KgXNkYPdL98YcwvQZK29OuQi5tRB/P1PAL6XeVgP/Lu1ti/0gubAQdT9g8BngRT+f/s3j0pB\ncyyz9fS3rLWn7XF8Qn/29dtP/Yf12Rd2z/oS4DVr7SnAXfh/qAHGmAXA+dbat1trTwLebYxZEnIZ\nR9rAfunAVfj7pQNgjIllHp8BLAU+boypHo1C5tD+6l8AfA041Vr7LqDcGHP26BQzZ/ZZ/37GmE8A\n4/3f+b4cqP63AhdmPhMeBOYxcRyo7t8BTsffpvlzxpiD3/JrnDDGXAH8BMjf4/hk+OzbX/2H/dkX\ndlgP7B0OPID/hxpqK3DmkMdx/G+k49lu+6UDQ/dLPxxYZ61ts9YmgaeBU8IvYk7tr/69wMnW2v6N\nKWOM/7/3nvZXf4wxJwEnALeEX7RQ7LP+xpjDgCbgs8aYx4EKa+2eO4COZ/v92wOvAlOA/rvQTMTr\naNcD79nL8cnw2Qf7rv+wP/tyFtbGmI8YY1YaY17L/G8lu+8d3p55PMBam7bWNmfe/x3gZWvt+lyV\nMSR73S99H8+1AxPt2/U+62+t9ay1DQDGmE8BRdba/xuFMubSPutvjJkOfBn4D2Ci3hdwf//+q4CT\ngBvwv7ifYYxZGm7xcmp/dQd4HXgJf6fH+621bWEWLgzW2nvxh/n3NBk++/ZZ/yCffTmbs7bW3g7c\nPvSYMWY5UJJ5WAK07Pk+Y0x+5n2twESYv2xjsM4AQ29s0sbuX1j22ibj3P7q3z+vdy1wKPDPIZct\nDPur//uASuDPwAwgYYxZY639echlzKX91b8JWG+tXQtgjHkQv/f5eKglzJ191t0YcyRwFv6wfyfw\nC2PMe621y8Mv5qiYDJ99+zXcz76wh8EH9g7P/P9Te3nN/wKvWGs/aa2dCMNC+9sv/Q3gEGNMuTEm\nD38Y6Nk3n2JcO9B+8bfiz+v905AhoYlkn/W31t5orT3BWns68C3glxMsqGH/f/+NQLExZmHm8bvw\ne5sTxf7q3gp0Ab2Zz7md+EPiE9WeI0eT4bNvqL2NnA3rsy/U7UaNMQngTvxeRC/wAWvtzswK8HX4\nPf1fAs/hV84DrsrM94xLQ1aEHpU59GHgOPxhj58aY87CHwp1gNsm2orQ/dUffwjwBQa/tHnA9dba\nP4Zdzlw50N9/yOsuAMwEXg2+r3//S4FvZ557xlr7mfBLmRsHUfdPAB/B/yzcAHzMWru3IeNxzRgz\nD/iVtfbkzAroSfHZ129v9SfAZ5/2BhcRERnjtCmKiIjIGKewFhERGeMU1iIiImOcwlpERGSMU1iL\niIiMcQprERGRMU5hLTLBGGNONcY8Nsz3bDLGzN3L8a8aY842xswzxmwaeizz86MjU2oR2Z9Qb5Ep\nIqEZ7gYKe329tfbLMLCxgzf0WMbSIIUTkeFRWIuMQcaYU4Gv4t/rdg7wN+Aa/O14G4Bu4N3A9fi3\nWXSBu62112ZOUW2MeQCYhb8j4KXW2qQx5j+AfwcKM+95v7XW4u8i9VVjzNGZc3/CWrvKGPMz4DHg\niSFl+xn+/t3HZh4/i38bwL+z1n4wc+xLQLe19js5aB6RSUfD4CJj1wnAJdbaxUAB/o0fDsXfpvcf\ngIuBWdbaJcCJwHuNMcsy752PH9BH4d8w4WJjTAlwLv49dI8C/sjuN8ux1tpjga8DB9qj3LPWXp55\n00nAb4DTjTGFmec/iH/PehEZAQprkbHrySG3iL0bvwe901q7LXPsdOAOAGttN/AL4O+GvHdj5udf\nAEutte34IXq+MeYbwDlA8ZDfd1vmXA8Ac40xu93Cdn+stZ34dw97rzHmnfh306ofTmVFZN8U1iJj\n19CbOkQyj7v3ODaUw+DUVnqP40ljzGz8OxuV4QfrHex+N6A9byLRN8zy/gz/y8AHMucWkRGisBYZ\nu95pjJlhjIkA/w8/YId6FLjAGBPJDD9/EH9+uf+9szPvvQD4P/xh9XXW2uvx7/izDIgOOV//fPN7\ngDXW2p6DKGMq8zuw1j4NzMZfdPaHYddWRPZJYS0ydtXhzx2vArYBj+zx/C1ADfAq/i33/jDkFnur\ngNszz23HH+J+CIgaY14HngE2AQsyr/eAw4wxK4BP43856D++P/8LvJq5JzHAvcCj1trk8KoqIvuj\nW2SKjEGZ1eBfttaePtplOVjGmHzgYeAya+0ro10ekYlEPWsRyZoxZjr+SMBfFdQiI089axERkTFO\nPWsREZExTmEtIiIyximsRURExjiFtYiIyBinsBYRERnj/j/xCMfmYw6xRgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = sns.distplot(predict_df.query(\"status == 0\").probability, hist=False, label='Negatives')\n", + "ax = sns.distplot(predict_df.query(\"status == 1\").probability, hist=False, label='Positives')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}