-
Notifications
You must be signed in to change notification settings - Fork 117
/
link.cpp
219 lines (189 loc) · 6.77 KB
/
link.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright (C) 2005, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include <cassert>
#include <iomanip>
#include "CoinPragma.hpp"
// For Branch and bound
#include "OsiSolverInterface.hpp"
#include "CbcModel.hpp"
#include "CoinModel.hpp"
// For Linked Ordered Sets
#include "CbcBranchLink.hpp"
#include "OsiClpSolverInterface.hpp"
#include "CoinTime.hpp"
/************************************************************************
This shows how we can define a new branching method to solve problems with
nonlinearities and discontinuities.
We are going to solve the problem
minimize 10.0*x + y + z - w
where x, y are continuous between 1 and 10, z can take the values 0, 0.1, 0.2 up to 1.0
and w can take the values 0 or 1. There is one constraint
w <= x*z**2 + y*sqrt(z)
One could try to use logarithms to make the problem separable but that is a very
weak formulation as we want to branch on z directly. The answer is the concept of linked
special ordered sets. The generalization with column generation can be even more powerful
but here we are limiting z to discrete values to avoid column generation.
The idea is simple:
A linear variable is a convex combination of its lower bound and upper bound!
If x must lie between 2 and 10 then we can substitute for x as x == 2.0*xl + 10.0*xu where
xl + xu == 1.0. At first this looks cumbersome but if we have xl0, xl1, ... xl10 and corresponding
xu and yl and yu then we can write:
x == sum 2.0*xl[i] + 10.0* xu[i] where sum xl[i] + xu[i] == 1.0
and
x*z**2 == 0.02*xl1 + 0.1*xu1 + 0.08*xl2 + 0.4*xu2 .... + 2.0*xl10 + 10.0*xu10
with similar substitutions for y and y*sqrt(z)
And now the problem is satisfied if w is 0 or 1 and xl[i], xu[i], yl[i] and yu[i] are only
nonzero for one i.
So this is just like a special ordered set of type 1 but on four sets simultaneously.
Also note that convexity requirements for any non-linear functions are not needed.
So we need a new branching method to do that - see CbcBranchLink.?pp
We are going to need a CbcBranchLink method to see whether we are satisfied etc and also to
create another branching object which knows how to fix variables. We might be able to use an
existing method for the latter but let us create two methods CbcLink and
CbcLinkBranchingObject.
For CbcLink we will need the following methods:
Constructot/Destructor
infeasibility - returns 0.0 if feasible otherwise some measure of infeasibility
feasibleRegion - sets bounds to contain current solution
createBranch - creates a CbcLinkBranchingObject
For CbcLinkBranchingObject we need:
Constructor/Destructor
branch - does actual fixing
print - optional for debug purposes.
The easiest way to do this is to cut and paste from CbcBranchActual to get current
SOS stuff and then modify that.
************************************************************************/
int main(int argc, const char *argv[])
{
OsiClpSolverInterface solver1;
// Create model
CoinModel build;
// Keep x,y and z for reporting purposes in rows 0,1,2
// Do these
double value = 1.0;
int row = -1;
// x
row = 0;
build.addColumn(1, &row, &value, 1.0, 10.0, 10.0);
// y
row = 1;
build.addColumn(1, &row, &value, 1.0, 10.0, 1.0);
// z
row = 2;
build.addColumn(1, &row, &value, 0.0, 1.0, 1.0);
// w
row = 3;
build.addColumn(1, &row, &value, 0.0, 1.0, -1.0);
build.setInteger(3);
// Do columns so we know where each is
int i;
for (i = 4; i < 4 + 44; i++)
build.setColumnBounds(i, 0.0, 1.0);
// Now do rows
// x
build.setRowBounds(0, 0.0, 0.0);
for (i = 0; i < 11; i++) {
// xl
build.setElement(0, 4 + 4 * i, -1.0);
// xu
build.setElement(0, 4 + 4 * i + 1, -10.0);
}
// y
build.setRowBounds(1, 0.0, 0.0);
for (i = 0; i < 11; i++) {
// yl
build.setElement(1, 4 + 4 * i + 2, -1.0);
// yu
build.setElement(1, 4 + 4 * i + 3, -10.0);
}
// z - just use x part
build.setRowBounds(2, 0.0, 0.0);
for (i = 0; i < 11; i++) {
// xl
build.setElement(2, 4 + 4 * i, -0.1 * i);
// xu
build.setElement(2, 4 + 4 * i + 1, -0.1 * i);
}
// w <= x*z**2 + y* sqrt(z)
build.setRowBounds(3, -COIN_DBL_MAX, 0.0);
for (i = 0; i < 11; i++) {
double value = 0.1 * i;
// xl * z**2
build.setElement(3, 4 + 4 * i, -1.0 * value * value);
// xu * z**2
build.setElement(3, 4 + 4 * i + 1, -10.0 * value * value);
// yl * sqrt(z)
build.setElement(3, 4 + 4 * i + 2, -1.0 * sqrt(value));
// yu * sqrt(z)
build.setElement(3, 4 + 4 * i + 3, -10.0 * sqrt(value));
}
// and convexity for x and y
// x
build.setRowBounds(4, 1.0, 1.0);
for (i = 0; i < 11; i++) {
// xl
build.setElement(4, 4 + 4 * i, 1.0);
// xu
build.setElement(4, 4 + 4 * i + 1, 1.0);
}
// y
build.setRowBounds(5, 1.0, 1.0);
for (i = 0; i < 11; i++) {
// yl
build.setElement(5, 4 + 4 * i + 2, 1.0);
// yu
build.setElement(5, 4 + 4 * i + 3, 1.0);
}
solver1.loadFromCoinModel(build);
// To make CbcBranchLink simpler assume that all variables with same i are consecutive
double time1 = CoinCpuTime();
solver1.initialSolve();
solver1.writeMps("bad");
CbcModel model(solver1);
model.solver()->setHintParam(OsiDoReducePrint, true, OsiHintTry);
// Although just one set - code as if more
CbcObject **objects = new CbcObject *[1];
/* Format is number in sets, number in each link, first variable in matrix)
and then a weight for each in set to say where to branch.
Finally a set number as ID.
*/
double where[] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 };
objects[0] = new CbcLink(&model, 11, 4, 4, where, 0);
model.addObjects(1, objects);
delete objects[0];
delete[] objects;
// Do complete search
model.branchAndBound();
std::cout << "took " << CoinCpuTime() - time1 << " seconds, "
<< model.getNodeCount() << " nodes with objective "
<< model.getObjValue()
<< (!model.status() ? " Finished" : " Not finished")
<< std::endl;
if (model.getMinimizationObjValue() < 1.0e50) {
const double *solution = model.bestSolution();
// check correct
int which = -1;
for (int i = 0; i < 11; i++) {
for (int j = 4 + 4 * i; j < 4 + 4 * i + 4; j++) {
double value = solution[j];
if (fabs(value) > 1.0e-7) {
if (which == -1)
which = i;
else
assert(which == i);
}
}
}
double x = solution[0];
double y = solution[1];
double z = solution[2];
double w = solution[3];
// check z
assert(fabs(z - 0.1 * ((double)which)) < 1.0e-7);
printf("Optimal solution when x is %g, y %g, z %g and w %g\n",
x, y, z, w);
printf("solution should be %g\n", 10.0 * x + y + z - w);
}
return 0;
}