This repository has been archived by the owner on Jun 20, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathsa.py
350 lines (282 loc) · 11.3 KB
/
sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import numpy as np
import time
import os
from multiprocessing import Pool
from tqdm import tqdm
from keras.models import load_model, Model
from scipy.stats import gaussian_kde
from utils import *
def _aggr_output(x):
return [np.mean(x[..., j]) for j in range(x.shape[-1])]
def _get_saved_path(base_path, dataset, dtype, layer_names):
"""Determine saved path of ats and pred
Args:
base_path (str): Base save path.
dataset (str): Name of dataset.
dtype (str): Name of dataset type (e.g., train, test, fgsm, ...).
layer_names (list): List of layer names.
Returns:
ats_path: File path of ats.
pred_path: File path of pred (independent of layers)
"""
joined_layer_names = "_".join(layer_names)
return (
os.path.join(
base_path,
dataset + "_" + dtype + "_" + joined_layer_names + "_ats" + ".npy",
),
os.path.join(base_path, dataset + "_" + dtype + "_pred" + ".npy"),
)
def get_ats(
model,
dataset,
name,
layer_names,
save_path=None,
batch_size=128,
is_classification=True,
num_classes=10,
num_proc=10,
):
"""Extract activation traces of dataset from model.
Args:
model (keras model): Subject model.
dataset (list): Set of inputs fed into the model.
name (str): Name of input set.
layer_names (list): List of selected layer names.
save_path (tuple): Paths of being saved ats and pred.
batch_size (int): Size of batch when serving.
is_classification (bool): Task type, True if classification task or False.
num_classes (int): The number of classes (labels) in the dataset.
num_proc (int): The number of processes for multiprocessing.
Returns:
ats (list): List of (layers, inputs, neuron outputs).
pred (list): List of predicted classes.
"""
temp_model = Model(
inputs=model.input,
outputs=[model.get_layer(layer_name).output for layer_name in layer_names],
)
prefix = info("[" + name + "] ")
if is_classification:
p = Pool(num_proc)
print(prefix + "Model serving")
pred = model.predict_classes(dataset, batch_size=batch_size, verbose=1)
if len(layer_names) == 1:
layer_outputs = [
temp_model.predict(dataset, batch_size=batch_size, verbose=1)
]
else:
layer_outputs = temp_model.predict(
dataset, batch_size=batch_size, verbose=1
)
print(prefix + "Processing ATs")
ats = None
for layer_name, layer_output in zip(layer_names, layer_outputs):
print("Layer: " + layer_name)
if layer_output[0].ndim == 3:
# For convolutional layers
layer_matrix = np.array(
p.map(_aggr_output, [layer_output[i] for i in range(len(dataset))])
)
else:
layer_matrix = np.array(layer_output)
if ats is None:
ats = layer_matrix
else:
ats = np.append(ats, layer_matrix, axis=1)
layer_matrix = None
if save_path is not None:
np.save(save_path[0], ats)
np.save(save_path[1], pred)
return ats, pred
def find_closest_at(at, train_ats):
"""The closest distance between subject AT and training ATs.
Args:
at (list): List of activation traces of an input.
train_ats (list): List of activation traces in training set (filtered)
Returns:
dist (int): The closest distance.
at (list): Training activation trace that has the closest distance.
"""
dist = np.linalg.norm(at - train_ats, axis=1)
return (min(dist), train_ats[np.argmin(dist)])
def _get_train_target_ats(model, x_train, x_target, target_name, layer_names, args):
"""Extract ats of train and target inputs. If there are saved files, then skip it.
Args:
model (keras model): Subject model.
x_train (list): Set of training inputs.
x_target (list): Set of target (test or adversarial) inputs.
target_name (str): Name of target set.
layer_names (list): List of selected layer names.
args: keyboard args.
Returns:
train_ats (list): ats of train set.
train_pred (list): pred of train set.
target_ats (list): ats of target set.
target_pred (list): pred of target set.
"""
saved_train_path = _get_saved_path(args.save_path, args.d, "train", layer_names)
if os.path.exists(saved_train_path[0]):
print(infog("Found saved {} ATs, skip serving".format("train")))
# In case train_ats is stored in a disk
train_ats = np.load(saved_train_path[0])
train_pred = np.load(saved_train_path[1])
else:
train_ats, train_pred = get_ats(
model,
x_train,
"train",
layer_names,
num_classes=args.num_classes,
is_classification=args.is_classification,
save_path=saved_train_path,
)
print(infog("train ATs is saved at " + saved_train_path[0]))
saved_target_path = _get_saved_path(
args.save_path, args.d, target_name, layer_names
)
if os.path.exists(saved_target_path[0]):
print(infog("Found saved {} ATs, skip serving").format(target_name))
# In case target_ats is stored in a disk
target_ats = np.load(saved_target_path[0])
target_pred = np.load(saved_target_path[1])
else:
target_ats, target_pred = get_ats(
model,
x_target,
target_name,
layer_names,
num_classes=args.num_classes,
is_classification=args.is_classification,
save_path=saved_target_path,
)
print(infog(target_name + " ATs is saved at " + saved_target_path[0]))
return train_ats, train_pred, target_ats, target_pred
def fetch_dsa(model, x_train, x_target, target_name, layer_names, args):
"""Distance-based SA
Args:
model (keras model): Subject model.
x_train (list): Set of training inputs.
x_target (list): Set of target (test or adversarial) inputs.
target_name (str): Name of target set.
layer_names (list): List of selected layer names.
args: keyboard args.
Returns:
dsa (list): List of dsa for each target input.
"""
assert args.is_classification == True
prefix = info("[" + target_name + "] ")
train_ats, train_pred, target_ats, target_pred = _get_train_target_ats(
model, x_train, x_target, target_name, layer_names, args
)
class_matrix = {}
all_idx = []
for i, label in enumerate(train_pred):
if label not in class_matrix:
class_matrix[label] = []
class_matrix[label].append(i)
all_idx.append(i)
dsa = []
print(prefix + "Fetching DSA")
for i, at in enumerate(tqdm(target_ats)):
label = target_pred[i]
a_dist, a_dot = find_closest_at(at, train_ats[class_matrix[label]])
b_dist, _ = find_closest_at(
a_dot, train_ats[list(set(all_idx) - set(class_matrix[label]))]
)
dsa.append(a_dist / b_dist)
return dsa
def _get_kdes(train_ats, train_pred, class_matrix, args):
"""Kernel density estimation
Args:
train_ats (list): List of activation traces in training set.
train_pred (list): List of prediction of train set.
class_matrix (list): List of index of classes.
args: Keyboard args.
Returns:
kdes (list): List of kdes per label if classification task.
removed_cols (list): List of removed columns by variance threshold.
"""
removed_cols = []
if args.is_classification:
for label in range(args.num_classes):
col_vectors = np.transpose(train_ats[class_matrix[label]])
for i in range(col_vectors.shape[0]):
if (
np.var(col_vectors[i]) < args.var_threshold
and i not in removed_cols
):
removed_cols.append(i)
kdes = {}
for label in tqdm(range(args.num_classes), desc="kde"):
refined_ats = np.transpose(train_ats[class_matrix[label]])
refined_ats = np.delete(refined_ats, removed_cols, axis=0)
if refined_ats.shape[0] == 0:
print(
warn("ats were removed by threshold {}".format(args.var_threshold))
)
break
kdes[label] = gaussian_kde(refined_ats)
else:
col_vectors = np.transpose(train_ats)
for i in range(col_vectors.shape[0]):
if np.var(col_vectors[i]) < args.var_threshold:
removed_cols.append(i)
refined_ats = np.transpose(train_ats)
refined_ats = np.delete(refined_ats, removed_cols, axis=0)
if refined_ats.shape[0] == 0:
print(warn("ats were removed by threshold {}".format(args.var_threshold)))
kdes = [gaussian_kde(refined_ats)]
print(infog("The number of removed columns: {}".format(len(removed_cols))))
return kdes, removed_cols
def _get_lsa(kde, at, removed_cols):
refined_at = np.delete(at, removed_cols, axis=0)
return np.asscalar(-kde.logpdf(np.transpose(refined_at)))
def fetch_lsa(model, x_train, x_target, target_name, layer_names, args):
"""Likelihood-based SA
Args:
model (keras model): Subject model.
x_train (list): Set of training inputs.
x_target (list): Set of target (test or[] adversarial) inputs.
target_name (str): Name of target set.
layer_names (list): List of selected layer names.
args: Keyboard args.
Returns:
lsa (list): List of lsa for each target input.
"""
prefix = info("[" + target_name + "] ")
train_ats, train_pred, target_ats, target_pred = _get_train_target_ats(
model, x_train, x_target, target_name, layer_names, args
)
class_matrix = {}
if args.is_classification:
for i, label in enumerate(train_pred):
if label not in class_matrix:
class_matrix[label] = []
class_matrix[label].append(i)
kdes, removed_cols = _get_kdes(train_ats, train_pred, class_matrix, args)
lsa = []
print(prefix + "Fetching LSA")
if args.is_classification:
for i, at in enumerate(tqdm(target_ats)):
label = target_pred[i]
kde = kdes[label]
lsa.append(_get_lsa(kde, at, removed_cols))
else:
kde = kdes[0]
for at in tqdm(target_ats):
lsa.append(_get_lsa(kde, at, removed_cols))
return lsa
def get_sc(lower, upper, k, sa):
"""Surprise Coverage
Args:
lower (int): Lower bound.
upper (int): Upper bound.
k (int): The number of buckets.
sa (list): List of lsa or dsa.
Returns:
cov (int): Surprise coverage.
"""
buckets = np.digitize(sa, np.linspace(lower, upper, k))
return len(list(set(buckets))) / float(k) * 100