-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathobj_name_synthesis.py
38 lines (23 loc) · 1.19 KB
/
obj_name_synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import torch
from diffusers.utils import load_image
import argparse
def main(input_path, output_path):
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
prompt = ""
image = load_image(input_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
inputs = processor(image, text=prompt, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(**inputs, max_new_tokens=20)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
with open(output_path, "w") as f:
f.write(generated_text)
print("image from {} captioned as {}".format(input_path, generated_text))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str, default="./input_images_path")
parser.add_argument("--output_path", type=str, default="./output_caption_path")
args = parser.parse_args()
main(args.input_path, args.output_path)