-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
410 lines (339 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import os
import argparse
import random
import torch
import gradio as gr
import transformers
import logging
import sys
from datasets import Dataset
from transformers import LlamaForCausalLM, LlamaTokenizer, GenerationConfig
from peft import PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model, PeftModel
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
model = None
tokenizer = None
peft_model = None
def dummy_word():
word_list = ['hello', 'llama', 'happy', 'hours', 'PhD', 'CS']
word1 = random.choice(word_list)
word2 = random.choice(word_list)
return word1 + '-' + word2
def maybe_load_models():
global model
global tokenizer
if model is None:
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
if tokenizer is None:
tokenizer = LlamaTokenizer.from_pretrained(
"decapoda-research/llama-7b-hf",
)
def reset_models():
global model
global tokenizer
del model
del tokenizer
model = None
tokenizer = None
def load_trained_llama(model_name):
peft_model_id = model_name
config = PeftConfig.from_pretrained(peft_model_id)
model = LlamaForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path)
model.cuda()
return model, tokenizer
def generate_text(
model_name,
text,
temperature,
top_p,
top_k,
repeat_penalty,
max_new_tokens,
progress=gr.Progress(track_tqdm=True)
):
global model
global tokenizer
if model_name and model_name != "None":
model, tokenizer = load_trained_llama(model_name)
else:
#for finetuned llama without CoT: see sallywww/insft50e_llama7b
model, tokenizer = load_trained_llama("sallywww/CoT_llama")
model.eval()
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(input_ids=inputs["input_ids"].cuda(), \
temperature=temperature, \
top_p=top_p, \
top_k=top_k, \
max_new_tokens=max_new_tokens)
invariants = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
return invariants
def tokenize_and_train(
training_text,
max_seq_length,
micro_batch_size,
gradient_accumulation_steps,
epochs,
learning_rate,
lora_r,
lora_alpha,
lora_dropout,
model_name,
progress=gr.Progress(track_tqdm=True)
):
global model
global tokenizer
reset_models()
maybe_load_models()
tokenizer.pad_token_id = 0
paragraphs = training_text.split("<end of text>")
print("Number of samples: " + str(len(paragraphs)))
def tokenize(item):
result = tokenizer(
item["text"],
truncation=True,
max_length=max_seq_length,
padding="max_length",
)
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
def to_dict(text):
return {"text": text}
paragraphs = [to_dict(x) for x in paragraphs]
data = Dataset.from_list(paragraphs)
data = data.shuffle().map(lambda x: tokenize(x))
model = prepare_model_for_int8_training(model)
model = get_peft_model(model, LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=["q_proj", "v_proj"],
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
))
output_dir = f"lora-{model_name}"
print("Training...")
training_args = transformers.TrainingArguments(
# Set the batch size for training on each device (GPU, CPU, or TPU).
per_device_train_batch_size=micro_batch_size,
# Number of steps for gradient accumulation. This is useful when the total
# batch size is too large to fit in GPU memory. The effective batch size
# will be the product of 'per_device_train_batch_size' and 'gradient_accumulation_steps'.
gradient_accumulation_steps=gradient_accumulation_steps,
# Number of warmup steps for the learning rate scheduler. During these steps,
# the learning rate increases linearly from 0 to its initial value. Warmup helps
# to reduce the risk of very large gradients at the beginning of training,
# which could destabilize the model.
# warmup_steps=100,
# The total number of training steps. The training process will end once this
# number is reached, even if not all the training epochs are completed.
# max_steps=1500,
# The total number of epochs (complete passes through the training data)
# to perform during the training process.
num_train_epochs=epochs,
# The initial learning rate to be used during training.
learning_rate=learning_rate,
# Enables mixed precision training using 16-bit floating point numbers (FP16).
# This can speed up training and reduce GPU memory consumption without
# sacrificing too much model accuracy.
fp16=True,
# The frequency (in terms of steps) of logging training metrics and statistics
# like loss, learning rate, etc. In this case, it logs after every 20 steps.
logging_steps=20,
# The output directory where the trained model, checkpoints,
# and other training artifacts will be saved.
output_dir=output_dir,
# The maximum number of checkpoints to keep. When this limit is reached,
# the oldest checkpoint will be deleted to save a new one. In this case,
# a maximum of 3 checkpoints will be kept.
save_total_limit=100,
)
trainer = transformers.Trainer(
# The pre-trained model that you want to fine-tune or train from scratch.
# 'model' should be an instance of a Hugging Face Transformer model, such as BERT, GPT-2, T5, etc.
model=model,
# The dataset to be used for training. 'data' should be a PyTorch Dataset or
# a compatible format, containing the input samples and labels or masks (if required).
train_dataset=data,
# The TrainingArguments instance created earlier, which contains various
# hyperparameters and configurations for the training process.
args=training_args,
# A callable that takes a batch of samples and returns a batch of inputs for the model.
# This is used to prepare the input samples for training by batching, padding, and possibly masking.
data_collator=transformers.DataCollatorForLanguageModeling(
tokenizer,
# Whether to use masked language modeling (MLM) during training.
# MLM is a training technique used in models like BERT, where some tokens in the
# input are replaced by a mask token, and the model tries to predict the
# original tokens. In this case, MLM is set to False, indicating that it will not be used.
mlm=False,
),
)
result = trainer.train(resume_from_checkpoint=False)
model.save_pretrained(output_dir)
reset_models()
return result
with gr.Blocks(
css="#refresh-button { max-width: 32px }",
title="PEFT LLaMA Finetuner") as demo:
with gr.Tab("Finetuning"):
with gr.Column():
training_text = gr.Textbox(lines=12, label="Training Data", info="Each sequence must be separated by <end of text>")
max_seq_length = gr.Slider(
minimum=1, maximum=4096, value=512,
label="Max Sequence Length",
info="The maximum length of each sample text sequence. Sequences longer than this will be truncated."
)
with gr.Row():
with gr.Column():
micro_batch_size = gr.Slider(
minimum=1, maximum=100, value=1,
label="Micro Batch Size",
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
)
gradient_accumulation_steps = gr.Slider(
minimum=1, maximum=10, value=1,
label="Gradient Accumulation Steps",
info="The number of steps to accumulate gradients before updating model parameters. This can be used to simulate a larger effective batch size without increasing memory usage."
)
epochs = gr.Slider(
minimum=1, maximum=100, value=1,
label="Epochs",
info="The number of times to iterate over the entire training dataset. A larger number of epochs may improve model performance but also increase the risk of overfitting.")
learning_rate = gr.Slider(
minimum=0.00001, maximum=0.01, value=3e-4,
label="Learning Rate",
info="The initial learning rate for the optimizer. A higher learning rate may speed up convergence but also cause instability or divergence. A lower learning rate may require more steps to reach optimal performance but also avoid overshooting or oscillating around local minima."
)
with gr.Column():
lora_r = gr.Slider(
minimum=1, maximum=16, value=8,
label="LoRA R",
info="LoRA rank parameter: this controls the dimensionality of the rank decomposition matrices. A larger lora_r increases the expressiveness and flexibility of LoRA but also increases the number of trainable parameters and memory usage."
)
lora_alpha = gr.Slider(
minimum=1, maximum=128, value=16,
label="LoRA Alpha",
info="LoRA scaling parameter: this controls how much LoRA affects the original pre-trained model weights. A larger lora_alpha amplifies the impact of LoRA but may also distort or override the pre-trained knowledge."
)
lora_dropout = gr.Slider(
minimum=0, maximum=1, value=0.01,
label="LoRA Dropout",
info="LoRA dropout probability: this controls the fraction of LoRA parameters that are set to zero during training. A larger lora_dropout increases the regularization effect of LoRA but also increases the risk of underfitting."
)
with gr.Column():
model_name = gr.Textbox(
lines=1, label="LoRA Model Name", value=dummy_word()
)
with gr.Row():
train_btn = gr.Button(
"Train", variant="primary", label="Train",
)
abort_button = gr.Button(
"Abort", label="Abort",
)
output_text = gr.Text("Training Status")
train_progress = train_btn.click(
fn=tokenize_and_train,
inputs=[
training_text,
max_seq_length,
micro_batch_size,
gradient_accumulation_steps,
epochs,
learning_rate,
lora_r,
lora_alpha,
lora_dropout,
model_name
],
outputs=output_text
)
abort_button.click(None, None, None, cancels=[train_progress])
with gr.Tab("Inference"):
with gr.Row():
with gr.Column():
with gr.Row():
lora_model = gr.Dropdown(
label="LoRA Model",
)
refresh_models_list = gr.Button(
"Reload Models",
elem_id="refresh-button"
)
inference_text = gr.Textbox(lines=7, label="Input Text")
inference_output = gr.Textbox(lines=12, label="Output Text")
with gr.Row():
with gr.Column():
# temperature, top_p, top_k, repeat_penalty, max_new_tokens
temperature = gr.Slider(
minimum=0, maximum=1.99, value=0.7, step=0.01,
label="Temperature",
info="Controls the 'temperature' of the softmax distribution during sampling. Higher values (e.g., 1.0) make the model generate more diverse and random outputs, while lower values (e.g., 0.1) make it more deterministic and focused on the highest probability tokens."
)
top_p = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01,
label="Top P",
info="Sets the nucleus sampling threshold. In nucleus sampling, only the tokens whose cumulative probability exceeds 'top_p' are considered for sampling. This technique helps to reduce the number of low probability tokens considered during sampling, which can lead to more diverse and coherent outputs."
)
top_k = gr.Slider(
minimum=0, maximum=200, value=50, step=1,
label="Top K",
info="Sets the number of top tokens to consider during sampling. In top-k sampling, only the 'top_k' tokens with the highest probabilities are considered for sampling. This method can lead to more focused and coherent outputs by reducing the impact of low probability tokens."
)
repeat_penalty = gr.Slider(
minimum=0, maximum=1.5, value=0., step=0.01,
label="Repeat Penalty",
info="Applies a penalty to the probability of tokens that have already been generated, discouraging the model from repeating the same words or phrases. The penalty is applied by dividing the token probability by a factor based on the number of times the token has appeared in the generated text."
)
max_new_tokens = gr.Slider(
minimum=0, maximum=4096, value=50, step=1,
label="Max New Tokens",
info="Limits the maximum number of tokens generated in a single iteration."
)
with gr.Column():
with gr.Row():
generate_btn = gr.Button(
"Generate", variant="primary", label="Generate",
)
inference_abort_button = gr.Button(
"Abort", label="Abort",
)
inference_progress = generate_btn.click(
fn=generate_text,
inputs=[
lora_model,
inference_text,
temperature,
top_p,
top_k,
repeat_penalty,
max_new_tokens
],
outputs=inference_output,
)
lora_model.change(
fn=reset_models
)
def update_models_list():
return gr.Dropdown.update(choices=["None"] + [
d for d in os.listdir() if os.path.isdir(d) and d.startswith('lora-')
], value="None")
refresh_models_list.click(
update_models_list,
inputs=None,
outputs=lora_model,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="PEFT LLaMA Finetuner")
parser.add_argument("-s", "--share", action="store_true", help="Enable sharing of the Gradio interface")
args = parser.parse_args()
demo.queue().launch(share=args.share)