-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
249 lines (227 loc) · 7.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright 2016 The Pixeldp Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Based on https://github.com/tensorflow/models/tree/master/research/resnet
"""ResNet Train/Eval module.
"""
import time
import six
import sys
import os
import json, math
from models import train
from models import evaluate
from datasets import cifar, mnist, svhn
import numpy as np
import models.params
from models import pixeldp_cnn, pixeldp_resnet, madry
import tensorflow as tf
import plots.plot_robust_accuracy
import plots.plot_accuracy_under_attack
import plots.plot_robust_precision_under_attack
import attacks
from attacks import train_attack, evaluate_attack, pgd, carlini, params, carlini_robust_precision, evaluate_attack_carlini_robust_prec
from flags import FLAGS
def run_one():
# Manual runs support cpu or 1 gpu
if FLAGS.num_gpus == 0:
dev = '/cpu:0'
else:
dev = '/gpu:0'
if FLAGS.dataset == 'mnist':
_model = pixeldp_cnn
steps_num = 40000
eval_data_size = 10000
image_size = 28
n_channels = 1
num_classes = 10
relu_leakiness = 0.0
lrn_rate = 0.01
lrn_rte_changes = [30000]
lrn_rte_vals = [0.01]
if FLAGS.mode == 'train':
batch_size = 128
n_draws = 1
elif FLAGS.mode == 'eval':
batch_size = 25
n_draws = 2000
elif FLAGS.dataset == 'svhn':
_model = pixeldp_resnet
steps_num = 60000
eval_data_size = 26032
image_size = 32
n_channels = 3
num_classes = 10
relu_leakiness = 0.0
lrn_rate = 0.01
lrn_rte_changes = [20000, 40000, 50000]
lrn_rte_vals = [0.01, 0.001, 0.0001]
if FLAGS.mode == 'train':
batch_size = 128
n_draws = 1
elif FLAGS.mode == 'eval':
batch_size = 25
n_draws = 2000
else:
steps_num = 90000
eval_data_size = 10000
lrn_rate = 0.1
lrn_rte_changes = [40000, 60000, 80000]
lrn_rte_vals = [0.01, 0.001, 0.0001]
if FLAGS.mode == 'train':
batch_size = 128
n_draws = 1
elif FLAGS.mode == 'eval':
batch_size = 1
n_draws = 2000
if FLAGS.dataset == 'cifar10':
_model = pixeldp_resnet
image_size = 32
n_channels = 3
num_classes = 10
relu_leakiness = 0.1
elif FLAGS.dataset == 'cifar100':
_model = pixeldp_resnet
image_size = 32
n_channels = 3
num_classes = 100
relu_leakiness = 0.1
if FLAGS.mode in ['attack', 'attack_eval', 'plot']:
batch_size = 1
n_draws = 10
compute_robustness = True
# See doc in ./models/params.py
L = 0.1
hps = models.params.HParams(
name_prefix="",
batch_size=batch_size,
num_classes=num_classes,
image_size=image_size,
n_channels=n_channels,
lrn_rate=lrn_rate,
lrn_rte_changes=lrn_rte_changes,
lrn_rte_vals=lrn_rte_vals,
num_residual_units=4,
use_bottleneck=False,
weight_decay_rate=0.0002,
relu_leakiness=relu_leakiness,
optimizer='mom',
image_standardization=False,
n_draws=n_draws,
dp_epsilon=1.0,
dp_delta=0.05,
robustness_confidence_proba=0.05,
attack_norm_bound=L,
attack_norm='l2',
sensitivity_norm='l2',
sensitivity_control_scheme='bound', # bound or optimize
noise_after_n_layers=1,
layer_sensitivity_bounds=['l2_l2'],
noise_after_activation=True,
parseval_loops=10,
parseval_step=0.0003,
steps_num=steps_num,
eval_data_size=eval_data_size,
)
# atk = pgd
atk = carlini
# atk = carlini_robust_precision
if atk == carlini_robust_precision:
attack_params = attacks.params.AttackParamsPrec(
restarts=1,
n_draws_attack=20,
n_draws_eval=500,
attack_norm='l2',
max_attack_size=5,
num_examples=1000,
attack_methodolody=attacks.name_from_module(atk),
targeted=False,
sgd_iterations=100,
use_softmax=False,
T=0.01
)
else:
attack_params = attacks.params.AttackParams(
restarts=1,
n_draws_attack=20,
n_draws_eval=500,
attack_norm='l2',
max_attack_size=5,
num_examples=1000,
attack_methodolody=attacks.name_from_module(atk),
targeted=False,
sgd_iterations=100,
use_softmax=True
)
# _model = pixeldp_cnn
# _model = pixeldp_resnet
# _model = madry
if _model == madry:
madry.Model.maybe_download_and_extract(FLAGS.models_dir)
hps = models.params.update(hps, 'batch_size', 200)
hps = models.params.update(hps, 'n_draws', 1)
attack_params = attacks.params.update(attack_params, 'n_draws_attack', 1)
attack_params = attacks.params.update(attack_params, 'n_draws_eval', 1)
compute_robustness = False
if FLAGS.mode == 'train':
train.train(hps, _model, dev=dev)
elif FLAGS.mode == 'eval':
evaluate.evaluate(hps, _model, compute_robustness=compute_robustness,
dev=dev)
elif FLAGS.mode == 'attack':
train_attack.train_one(
FLAGS.dataset,
_model,
hps,
atk,
attack_params,
dev=dev)
tf.reset_default_graph()
elif FLAGS.mode == 'attack_eval':
if attack_params.attack_methodolody == 'carlini_robust_precision':
evaluate_attack_carlini_robust_prec.evaluate_one(
FLAGS.dataset,
_model,
hps,
atk,
attack_params,
dev=dev)
else:
evaluate_attack.evaluate_one(
FLAGS.dataset,
_model,
hps,
atk,
attack_params,
dev=dev)
elif FLAGS.mode == 'plot':
ms = []
ps = []
atks = [[]]
robust_ms = [_model]
robust_ps = [hps]
robust_atks = [[attack_params]]
# plots.plot_robust_accuracy.plot("test_robust_acc", None, None, ms, ps)
plots.plot_accuracy_under_attack.plot("test_acc_under_atk",
robust_ms, robust_ps, robust_atks, x_ticks=[x/10 for x in range(1,16)])
# plots.plot_robust_precision_under_attack.plot("test_robust_prec_under_atk",
# ms, ps, atks,
# robust_ms, robust_ps, robust_atks,
# x_range=(0, 2),
# x_ticks=[x/10 for x in range(1,21)])
def main(_):
run_one()
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()