Skip to content

Latest commit

 

History

History
182 lines (107 loc) · 5.71 KB

README.md

File metadata and controls

182 lines (107 loc) · 5.71 KB

VIB ML course 2024

Based on previous courses by Prof. Sven Degroeve.

This repository contains the Jupyter notebooks for the VIB Machine Learning & Deep Learning Workshop.

Getting started

Schedule

Day 1


9:30 Introduction to Machine Learning (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 1_introduction.pptx


10:00 Data fitting (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 2_regression.pptx

Some discussion about gradient descent.

Hands on: Histone_marks_lr.ipynb section 1


10:45 Break


11:00 Logistic regression (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 3_logistic_regression.pptx

Introduction to learning platform Kaggle + peptide retention time competition

Hands on: Histone_marks_lr.ipynb sections 2, 3 and 4


12:15 Lunch


13:15 Model complexity (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 4_regularization.pptx

Hands on: Histone_marks_lr.ipynb section 5


14:00 Bias & Variance (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 5_ensemble_learning.pptx

Hands on: Histone_marks_dt.ipynb


15:00 Kaggle Competition (Ralf Gabriels & Robbin Bouwmeester)

In this section it is up to you to fit and optimze a regression model, evaluate it, and make predictions on the test set. At this point there should be enough time to help each of you individually.

Day 2


09:30 What is deep learning? (Ralf Gabriels)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 6_deep_neural_networks.pptx


10:30 Break


10:45 CNNs and RNNs (Ralf Gabriels)

Hands on (CNN): Melanoma_CNN.ipynb (Kaggle)

Additional material (RNN): Pytorch lightning RNN

Lecture slides:

7_computer_vision.pptx

8_sequence_modeling.pptx


12:15 Lunch


13:15 CNNs and RNNs - continued (Ralf Gabriels)

Hands on (CNN): Melanoma_CNN.ipynb (Kaggle)

Additional material (RNN): Pytorch lightning RNN

Lecture slides:

7_computer_vision.pptx

8_sequence_modeling.pptx


13:45 Deep Generative Models (Robbin Bouwmeester)

Lecture slides: 9_deep_generative_models.pptx


14:30 Break


14:45 Discussions, Q&A, and competition (Ralf Gabriels & Robbin Bouwmeester)

https://playground.tensorflow.org/


16:50 Announcement of the competition winner & closing!

Further learning

Contact (open for collaborations)

Ralf Gabriels (ralf.gabriels@ugent.be) & Robbin Bouwmeester (robbin.bouwmeester@ugent.be)