-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
66 lines (48 loc) · 2.08 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
import argparse
from models.config import _C as cfg
from models.networks import OursSSI, OursSI, BMDSSI
from models.bmd.midas.utils import write_depth
def read_data(img):
img = np.asarray(Image.open(img).convert('RGB'))
return img
def read_datalist(datapath):
rgbs = sorted([os.path.join(datapath, x) for x in os.listdir(datapath) if x.split('.')[-1].lower() in ['jpg', 'png', 'jpeg']])
return rgbs
def evaluate(args):
if args.model == "SSI":
model = BMDSSI(cfg.model_config)
elif args.model == "SSIBase":
model = OursSSI(cfg.model_config)
elif args.model == "SI":
model = OursSI(cfg.model_config)
image_list = read_datalist(args.input_path)
print(len(image_list), "images found.")
for img_path in tqdm(image_list, total=len(image_list)):
img = read_data(img_path)
imagename = os.path.basename(img_path).split('.')[0]
print("parsed image name:", imagename)
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
base, high = None, None
prediction = model.evaluate(img)
## normalize depth maps:
if args.model == "SSI" or args.model == "SSIBase":
prediction = (prediction - prediction.min()) / (prediction.max() - prediction.min())
elif args.model == "SI":
prediction = prediction / prediction.max()
else:
raise ("Unknown network type")
write_depth(os.path.join(output_path, imagename + '.png'), prediction, colored=args.colorize_depth)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model",choices = ['SSI', 'SI' , 'SSIBase'])
parser.add_argument("-i", "--input_path",help="Input folder path - reads all 'jpg', 'png', 'jpeg' files")
parser.add_argument("-o", "--output_path",help="Output folder path")
parser.add_argument("--colorize_depth", action='store_true')
args = parser.parse_args()
evaluate(args)