forked from thomas-genet/abstEVM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
abstEvm.thy
1306 lines (1081 loc) · 60 KB
/
abstEvm.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
theory abstEvm
imports Main
begin
(* Isabelle 2018 *)
section \<open>First EVM abstract semantics : yellow paper\<close>
subsection \<open>Common assumptions for the two abstract semantics\<close>
text \<open>
This theory defines an asbtract version of the Ethereum Virtual Machine (EVM)
The corresponding functions are:
smallstep ::"call_stack \<Rightarrow> call_stack" (for one step evaluation)
execute :: "call_stack \<Rightarrow> frame" (for complete evaluation)
The main purpose of this theory is to show termination of the execute function.
\<close>
text \<open>
Here are the abstractions that are done w.r.t. EVM semantics:
- We make no difference between different calls w.r.t. gas consumption
- We make no difference between all "local" operations, they have an arbitrary cost greater than 0
- We make no difference between all jump operations: Jump does not take any destination, the semantics
applies this instruction by jumping to an arbitrary position in the program (encodes both JUMP and
JUMPI)
- The call stack size is bounded by a natural greater than 0 (called stack_lim)
- The create is represented by a call on an undefined contract name. It creates the contract
with an arbitrary program, and runs it.
- We make no difference between return and revert
- We make no difference between stop and suicide/selfdestruct
\<close>
subsection \<open>Specific assumptions : yellow paper\<close>
text \<open>Assumptions coherent with the yellow paper:
- A call consumes the gas **after** the return
- Because of the above assumption, a contract recursively calling itself would
never stop (it consumes no gas) if there was no call stack limit. This is why
the termination proof highly depends on the call stack bound.
- A successful call can result into a gas refund
- When a call returns with a gas greater than the gas that was initially sent,
we throw an exception.
\<close>
subsection \<open>Main datatypes\<close>
(* Maximum call stack size *)
consts
stack_lim::nat
axiomatization
where min_stack_lim: "stack_lim>0"
type_synonym
gas = nat
type_synonym
pc= nat
type_synonym
contractName= string
datatype
instr = Nil (* Undefined instruction *)
| Local "gas" (* For each local operation we associate a gas cost *)
(* The call operation has two gas values. The first one is the cost of the call instruction
and the second one is the gas transferred to the called contract *)
| Call "gas*gas*contractName" (*g_base_mem(gas 1) = Cbase+Cmem on Yellow paper ; gcall(gas 2)= ccall *)
| Stop (* Stop represent selfdestruct (suicide), stop, and return *)
| Jump "gas" (* Jump has no destination, the destination will be arbitrarily given in the semantics *)
type_synonym program = "instr list"
definition "p1= [Local 10,Call (1,1,''c1''),(Jump (5))]"
value "nth p1 0"
value "nth p1 1"
value "nth p1 2"
(* The instruction associated to a pc in a given program *)
fun mynth :: "program \<Rightarrow> pc \<Rightarrow> instr" ("_.(_)")
where
"mynth p pc = (if pc < (length p ) then (nth p pc) else Stop)"
value "p1.(0)"
value "p1.(1)"
value "p1.(2)"
value "p1.(5)"
abbreviation "name_test \<equiv> (''hello''::contractName) "
type_synonym env= "contractName \<Rightarrow> program option"
(* Examples of environments *)
definition "(e1::env)= (\<lambda>x. None)" (* The empty environement *)
definition "(e2::env)= e1 (''c1'':= Some [Nil])" (* association between contract name "c1" and a [Nil] program *)
definition "(e3::env)= e2 (''c2'':= Some [Local 10,Stop])"
definition "(e4::env)= e3 (''c1'':= Some [Jump((5::gas))])" (* we change the program associated to c1*)
definition "(e5::env) = e4 (name_test := Some [Stop])"
value "e4(''c1'')"
value "e4(''c2'')"
value "e4(''c3'')" (* Contract ''c3'' is undefined *)
value "e4(name_test)"
value "e5(name_test)"
subsection \<open>Valid instructions, programs, environments, frames, stacks\<close>
(* This predicates represents valid instructions, i.e., instructions with a strictly positive cost! *)
fun valid_instr :: "instr \<Rightarrow> bool"
where
"valid_instr (Local n) = (n>0)"|
"valid_instr (Stop) = True"|
"valid_instr (Nil) = True"|
"valid_instr (Call (g,gcall,name)) = ((g>0)\<and>(gcall>0))"|
"valid_instr (Jump(n)) = (n>0)"
(* Remark: Nil is a valid instruction whose execution will result into an exception *)
(* A valid program is composed of valid instructions *)
fun valid_prog :: "program \<Rightarrow> bool"
where
"valid_prog [] = True"|
"valid_prog (i#p) = ((valid_instr i) \<and> (valid_prog p))"
(* A function returning an arbitrary valid program *)
consts
any_valid_program:: "nat \<Rightarrow> program"
axiomatization
where any_valid_is_valid: "\<forall> x. valid_prog (any_valid_program x)"
(* A valid environement maps contracts names to valid programs *)
fun valid_env :: "env \<Rightarrow> bool"
where
"valid_env e= (\<forall> n.
(case e(n) of
None \<Rightarrow> True
| (Some p) \<Rightarrow> valid_prog p))"
(* Datatype of frames (i.e. program evaluation states) *)
datatype
frame =
Ok "gas*pc*program*env" (* Regular program state *)
| Exception (* Exceptional program final state *)
| Halt "gas*env" (* Regular program final state *)
| Invalid_frame (* Invalid_frame should never occur. Present only for totality of the small_step semantic function (on programs that are ill formed) *)
type_synonym
call_stack = "frame list"
(* A call stack is a list of frames where the most recent frame is at the beginning of the list *)
(* We show in the soundness theorem below (see finalCorrection) that the execution of any valid call_stack (i.e. without Invalid_frames)
results into another valid call_stack *)
fun depth_stack:: " call_stack \<Rightarrow> nat"
where "depth_stack stack = (length stack)"
(* The valid_stack_aux function only checks that a stack is composed of OK states *)
fun valid_stack_aux :: "call_stack \<Rightarrow> bool"
where
"valid_stack_aux [] = True"|
"valid_stack_aux ((Ok (g,pc,p,e))#[]) = ((valid_env e) \<and> (valid_prog p ))"|
"valid_stack_aux ((Ok (g,pc,p,e))#(Ok (g2,pc2,p2,env2))#l) =
(case p2.(pc2) of
Call(gcall,ccall,name) \<Rightarrow> (if ((gcall+ccall)>g2 | (gcall\<le>0) | (ccall\<le>0)) then False
else ((valid_prog p) \<and> (valid_env e) \<and> (valid_stack_aux (Ok(g2,pc2,p2,env2)#l))))
| _ \<Rightarrow> False)" |
"valid_stack_aux l = False"
(* A stack is valid if it is a list of valid program states and after a Halt/Exception there can only
be OK frames ... and the current called instruction in the state Ok should be
a call with correct values.
Besides, all environement should map names to valid programs (valid_env)!
*)
fun valid_stack :: "call_stack \<Rightarrow> bool"
where
"valid_stack [] = False"|
"valid_stack [Halt (g,e)] = (valid_env e)"|
"valid_stack [Exception] = True"|
"valid_stack [Invalid_frame] = False"|
"valid_stack ((Ok (g,pc,p,e))#[]) = ((valid_env e) \<and> (valid_prog p ))"|
"valid_stack ((Ok (g,pc,p,e))#(Ok (g2,pc2,p2,env2))#l) =
(case p2.(pc2) of
Call(gcall,ccall,name) \<Rightarrow> (if ((gcall+ccall)>g2 | (gcall\<le>0) | (ccall\<le>0)) then False
else ((valid_prog p) \<and> (valid_env e) \<and> (valid_stack_aux (Ok(g2,pc2,p2,env2)#l))))
| _ \<Rightarrow> False)" |
"valid_stack ((Ok (g,pc,p,e))#_) = False" |
"valid_stack ((Halt (g,e))#Ok(g2,pc,p,env2)#l) =
(case p.(pc) of
Call(gcall,ccall,name) \<Rightarrow> (if ((gcall+ccall)>g2 | (gcall\<le>0) | (ccall\<le>0)) then False
else ((valid_env e) \<and> (valid_stack_aux (Ok(g2,pc,p,env2)#l))))
| _ \<Rightarrow> False)" |
"valid_stack ((Halt (g,e))#_) = False" |
"valid_stack ((Exception)#Ok(g2,pc,p,env2)#l) = (case p.(pc) of
Call(gcall,ccall,name) \<Rightarrow> (if ((gcall+ccall)>g2 | (gcall\<le>0) | (ccall\<le>0)) then False
else (valid_stack_aux (Ok(g2,pc,p,env2)#l)))
| _ \<Rightarrow> False)"|
"valid_stack ((Exception)#_) = False"|
"valid_stack (Invalid_frame#l) = False"
(* We associate gas for exception/Invalid frame for the termination measures *)
fun get_gas_frame :: "frame \<Rightarrow> nat"
where
"get_gas_frame Invalid_frame = 1"|
"get_gas_frame Exception = 1"|
"get_gas_frame (Halt (g,e)) = g+2"|
"get_gas_frame (Ok (g,pc,p,e)) = g+3"
value "get_gas_frame Exception"
value "get_gas_frame Invalid_frame"
fun get_gas :: "call_stack \<Rightarrow> nat "
where
"get_gas [] = 0"|
"get_gas (a#l) = (get_gas_frame a)+(get_gas l)"
subsection \<open>Measure definition\<close>
fun order :: "nat \<Rightarrow> call_stack \<Rightarrow> nat"
where
"order n [] = 0"|
"order n (Exception#l) = (if (n>(length l)) then 0 else ((get_gas_frame (nth (rev (Exception#l)) n))))"|
"order n (Invalid_frame#l) = (if (n>(length l)) then 0 else ((get_gas_frame (nth (rev (Invalid_frame#l)) n))))"|
"order n ((Halt (g,e))#l) = (if (n>(length l)) then (g+3) else ((get_gas_frame (nth (rev ((Halt (g,e))#l)) n))))"|
"order n ((Ok (g,pc,p,e))#l) = (if (n>(length l)) then (g+4) else ((get_gas_frame (nth (rev ((Ok (g,pc,p,e))#l)) n))))"
fun list_order_aux :: "nat \<Rightarrow> nat \<Rightarrow> (call_stack \<Rightarrow> nat) list"
where
"list_order_aux 0 _ = []" |
"list_order_aux (Suc x) y= (order (y - (Suc x)))#(list_order_aux x y)"
(* This is the main termination measure function: given a maximal stack size i,
it results into a list (of length i) of measure functions mapping call_stack to nat
E.g., (list_order 3) is [(order 0),(order 1),(order 2)]
*)
fun list_order :: "nat \<Rightarrow> (call_stack \<Rightarrow> nat) list"
where
"list_order i = (list_order_aux i i)"
value "list_order 3"
(* Basic properties on list_order *)
lemma size_list_order_aux: "(length (list_order_aux i j)) = i"
apply (induct i arbitrary:j)
apply auto
done
lemma size_list_order: "(length (list_order i)) = i"
using size_list_order_aux apply auto
done
lemma list_order_aux_nth:"(j\<ge>i \<and> k<i) \<longrightarrow> ((list_order_aux i j) ! k) = (order (j - i + k))"
apply (induct i arbitrary:j k)
apply auto
using less_Suc_eq_0_disj by auto
lemma list_order_nth:"(i<j) \<longrightarrow> ((list_order j)! i) = (order i)"
using list_order_aux_nth by auto
(* Recall that a call stack is a list of frames where the most recent frame is at the beginning of the list *)
value "order 0 [Ok (18,pc,p,e)]"
value "order 1 [Ok (18,pc,p,e)]"
(* After a call 10 given to contract c1, the stack become *)
value "order 0 [Ok (10,pc2,p2,e_2),Ok (18,pc,p,e)]"
(* After a call 5 given to contract c2, the stack becomes *)
value "order 0 [Ok (5,pc3,p3,e_2),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "order 1 [Halt(2,e_4),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]" (* We assume that contract c2 ends with 2 gas *)
value "order 0 [Ok (7,pc2,p2,e_2),Ok (18,pc,p,e)]" (* We return from the contract c2*)
value "order 0 [Halt (7,e_2),Ok (18,pc,p,e)]" (* Contract c1 ends with 7 gas *)
value "order 0 [Ok (12,pc,p,e)]" (* We return from the contract c1 *)
value "order 3 [Exception, Ok (7,pc2,p2,e_2),Ok (18,pc,p,e)]"
value "order 0 [Exception]"
value "order 0 [Invalid_frame]"
value "order 1 [Ok (12,pc,p,e),Invalid_frame]"
value "order 1 [Invalid_frame]"
value "order 1 [Invalid_frame,Invalid_frame]"
(* Functions used to explain the measure *)
fun specialMap:: "('a \<Rightarrow> 'b) list \<Rightarrow> 'a \<Rightarrow> 'b list"
where
"specialMap [] _ = []" |
"specialMap (f#r) x = (f x)#(specialMap r x)"
fun demoMeasure:: "nat \<Rightarrow> call_stack \<Rightarrow> nat list"
where
"demoMeasure max_stack_size c = specialMap (list_order max_stack_size) c"
(* How order is used?*)
(* We associate to each frame stack a list of natural numbers *)
(* For instance, by executing a call(...,10,...) we move from [Ok (18,pc,p,e)] to stack:
[Ok (10,pc2,p2,e_2),Ok (18,pc,p,e)]
For a stack, the measure becomes a list of natural numbers that are compared with lexicographic order
e.g the above stacks are (in the correct order for lexicographic comparison):
||Ok 18| and ||Ok 18|Ok 10| the measurement lists are of the form
[18,19,19,19] and [18,10,11,11] (where the numbers may be greater in the real measure functions (there are +2 and +3 in Justine's
measure functions)
*)
value "demoMeasure 4 [Ok (18,pc,p,e)]"
value "demoMeasure 4 [Exception,Ok (18,pc,p,e)]"
value "demoMeasure 4 [Ok (18,pc,p,e)]"
value "demoMeasure 4 [Ok (10,pc2,p2,e_2),Ok (18,pc,p,e)]"
value "demoMeasure 4 [Ok (5,pc3,p3,e_2),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "demoMeasure 4 [Halt(2,e_4)]"
value "demoMeasure 4 [Exception]"
(* because the measure is a list of functions, [(order 0), (order 1), (order 2), (order 3)] and we have *)
value "order 0 [Ok (5,pc3,p3,e_2),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "order 1 [Ok (5,pc3,p3,e_2),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "order 2 [Ok (5,pc3,p3,e_2),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "order 3 [Ok (5,pc3,p3,e_2),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "demoMeasure 4 [Halt(2,e_4),Ok (10,pc2,p2,e2),Ok (18,pc,p,e)]"
value "demoMeasure 4 [Ok (7,pc2,p2,e_2),Ok (18,pc,p,e)]"
value "demoMeasure 4 [Ok (12,pc,p,e)]"
(*____________________________Some lemmas on order______________________________________ *)
lemma order_equal_frame : " n < length l \<longrightarrow> get_gas_frame (((rev l)@a) ! n ) = get_gas_frame ( (rev l)! n) "
by (simp add: nth_append)
lemma order_equal_base : " (n < length (i#l)) \<longrightarrow> get_gas_frame (((rev (i#l))@a) ! n) = order n (i#l)"
apply (induct i)
apply auto
apply (simp add: nth_append)
apply (metis length_rev less_Suc_eq nth_append nth_append_length)
apply (metis length_rev less_Suc_eq nth_append nth_append_length)
apply (simp add: nth_append)
done
lemma order_equal : "n<(length l) \<longrightarrow> (order n (a#l)) = (order n l)"
apply (cases "l=[]")
apply simp
apply (induct a)
apply auto
apply (metis get_gas.elims order_equal_base)
apply (metis get_gas.elims order_equal_base)
apply (metis get_gas.elims order_equal_base)
apply (metis get_gas.elims order_equal_base)
done
lemma order_rev : "(n<(length l)) \<longrightarrow> (order n l ) = (get_gas_frame (nth (rev l) n))"
using less_Suc_eq order_equal order_equal_base order_equal_frame by auto
lemma order_rev_length : " (order (length l) (a#l)) = (get_gas_frame a)"
by (metis length_Cons length_rev lessI nth_append_length order_rev rev.simps(2))
lemma trivial : "(~ i = [] ) \<longrightarrow> ((order 0 (a#i)) = (order 0 i)) "
by (simp add: order_equal)
lemma min_callstack : " ~ ((i = [])\<or>(i=[Invalid_frame]))\<longrightarrow> (a = nth (rev i) 0 )\<longrightarrow> order 0 i > 0"
apply (induct a)
apply simp
apply (simp add: order_rev)
using frame.distinct(5) get_gas_frame.elims gr_zeroI numeral_3_eq_3 apply auto[1]
apply simp
using get_gas_frame.elims order_rev apply force
apply simp
using get_gas_frame.elims order_rev apply force
apply simp
by (simp add: order_rev)
lemma order_min_diff : "get_gas_frame a > get_gas_frame b \<longrightarrow> (order (length l) (a#l) ) > (order (length l) (b#l) )"
apply (induct l)
apply (simp add: order_rev)
by (metis length_Cons length_rev lessI nth_append_length order_rev rev.simps(2))
lemma order_list_part1 : "(length l)< stack_lim \<longrightarrow> ( ((n<(length l)) \<longrightarrow> (order n (a#l)) = (order n (b#l))))"
by (simp add: order_equal)
lemma order_list_part2 : "(length l)< stack_lim \<longrightarrow> get_gas_frame a > get_gas_frame b \<longrightarrow> (order (length l) (a#l) ) > (order (length l) (b#l))"
by (simp add: order_min_diff)
value "order 0 [Halt (18,Map.empty)]"
value "order 0 [Exception]"
lemma list_order_rec1: "((f1 a) = (f1 b)) \<longrightarrow> (((a,b) \<in> (measures (f1#lf))) = ((a,b) \<in> (measures lf)))"
apply simp
done
lemma list_order_rec2: "(i<(length (lf::('a \<Rightarrow> nat)list)) \<and> (\<forall> j. (j<i \<longrightarrow> (((lf!j) a) = ((lf!j) b))) \<and> ((lf!i) a) < ((lf!i) b))) \<longrightarrow>
(\<forall> j. (j<i \<and> f=lf!j) \<longrightarrow> \<not> ((f a)>(f b)))"
apply (induct lf arbitrary: f a b)
apply auto
done
lemma list_order_length: "(\<exists> i. lf=[] \<and> i<(length (f1#lf)) \<and> (((f1#lf)!i) a)<(((f1#lf)!i) b)) \<longrightarrow> ((a,b) \<in> (measures (f1#lf)))"
apply auto
done
lemma list_order_length2: "(\<exists> i. i>0 \<and> i<(length (f1#lf)) \<and> (\<forall> j. j<i \<longrightarrow> (((f1#lf)!j) a) = (((f1#lf)!j) b))) \<longrightarrow> (((a,b) \<in> (measures (f1#lf))) = ((a,b) \<in> (measures lf)) )"
apply auto
done
lemma list_order_seq: "(\<exists> i. i<(length lf) \<and> (\<forall> j. (j<i) \<longrightarrow> ((lf!j) a) = ((lf!j) b)) \<and> ((lf!i) a) < ((lf!i) b)) \<longrightarrow> ((a,b) \<in> (measures lf))"
apply (case_tac "(\<exists> i. i<(length lf) \<and> (\<forall> j. (j<i) \<longrightarrow> ((lf!j) a) = ((lf!j) b)) \<and> ((lf!i) a) < ((lf!i) b))")
apply auto
apply (induct lf arbitrary: a b)
apply simp
apply (rename_tac f1 lf i a b)
by (metis gr0_conv_Suc in_measures(2) length_Cons not_less_eq nth_Cons_0 nth_Cons_Suc nth_non_equal_first_eq)
lemma list_order_pos: "(a\<noteq>[] \<and> b\<noteq>[]) \<longrightarrow>(\<exists> i. i<stack_lim \<and> (\<forall> j. (j<i) \<longrightarrow> ((order j) a) = ((order j) b)) \<and> ((order i) a) < ((order i) b)) \<longrightarrow> ((a,b) \<in> (measures (list_order stack_lim)))"
apply auto
apply (case_tac "(\<exists> i. i<(length (list_order stack_lim)) \<and> (\<forall> j. (j<i) \<longrightarrow> (((list_order stack_lim)!j) a) = (((list_order stack_lim)!j) b)) \<and> (((list_order stack_lim)!i) a) < (((list_order stack_lim)!i) b))")
apply (simp add: list_order_seq)
apply (case_tac "length (list_order stack_lim) = stack_lim")
defer
using size_list_order apply blast
apply (case_tac "j<i \<longrightarrow> ((list_order stack_lim ! j) a = (list_order stack_lim ! j) b)")
defer
using list_order_nth apply auto[1]
apply (case_tac "((list_order stack_lim ! i) a < (list_order stack_lim ! i) b)")
defer
using list_order_nth apply auto[1]
using list_order_nth by auto
lemma gas_order: "get_gas_frame a > get_gas_frame b \<longrightarrow> (order (length l) (a#l) ) > (order (length l) (b#l))"
apply (induct l)
apply auto
apply (metis list.size(3) order_rev_length)
by (metis length_Cons order_rev_length)
lemma list_order_aux:"((length l)< stack_lim \<and> (\<forall> j<(length l). (order j (a#l)) = (order j (b#l))) \<and>
(order (length l) (a#l) ) > (order (length l) (b#l)) \<and> lf= (list_order stack_lim)) \<longrightarrow>
(\<exists> i. i=(length l) \<and> (\<forall> j. (j<i) \<longrightarrow> ((lf!j) (a#l)) = ((lf!j) (b#l))) \<and> ((lf!i) (a#l)) > ((lf!i) (b#l)))"
apply simp
apply (case_tac "(list_order_aux stack_lim stack_lim ! length l) = (order (length l))")
apply (metis less_imp_le_nat less_le_trans list_order.simps list_order_nth)
by (metis list_order.simps list_order_nth )
lemma list_order_seq2: "((length l)< stack_lim \<and> (\<forall> j<(length l). (order j (a#l)) = (order j (b#l))) \<and>
(order (length l) (a#l) ) > (order (length l) (b#l))) \<longrightarrow> ((b#l),(a#l))\<in> measures (list_order stack_lim)"
apply (case_tac "(\<exists> i. i=(length l) \<and> (\<forall> j. (j<i) \<longrightarrow> (((list_order stack_lim)!j) (a#l)) = (((list_order stack_lim)!j) (b#l))) \<and> (((list_order stack_lim)!i) (a#l)) > (((list_order stack_lim)!i) (b#l)))")
apply (metis list_order_seq size_list_order)
using list_order_aux by auto
lemma order_list : " (length l)<( stack_lim ) \<longrightarrow> get_gas_frame a > get_gas_frame b \<longrightarrow> ((b#l),(a#l))\<in> measures (list_order stack_lim)"
using list_order_seq2 order_list_part1 order_rev_length by auto
lemma impossible_case_aux : " length l > 1 \<longrightarrow> order 1 l > 0"
using get_gas_frame.elims order_rev by force
lemma teste : " order 1 l = 0 \<longrightarrow> length l \<le> 1"
using impossible_case_aux not_less by blast
lemma impossible_case :"order 1 l = 0 \<longrightarrow> (l = [Invalid_frame] \<or> l = [Exception] \<or> l = []) "
apply (case_tac l)
apply simp
apply (case_tac list)
prefer 2
using impossible_case_aux apply auto[1]
apply (case_tac a)
apply auto
done
lemma min_invalid_frame : "(length i\<le>stack_lim) \<longrightarrow> \<not>(i =[Invalid_frame] \<or> i = []\<or>(i=[Exception])) \<longrightarrow> ([Invalid_frame],i) \<in> measures (list_order stack_lim)"
apply auto
apply (case_tac i)
apply simp
apply (case_tac "(order 0 (a#list))>(order 0 [Invalid_frame])")
apply (metis diff_self_eq_0 gr0_conv_Suc list_order_aux.simps(2) measures_less min_stack_lim)
apply (case_tac "(order 0 (a#list)) =(order 0 [Invalid_frame])")
apply (case_tac "(order 1 (a#list))>(order 1 [Invalid_frame])")
apply (case_tac "stack_lim<1")
using min_stack_lim apply linarith
apply (metis (no_types, hide_lams) add_2_eq_Suc' add_cancel_right_left get_gas_frame.elims get_gas_frame.simps(1) le_eq_less_or_eq length_Cons length_greater_0_conv less_add_Suc2 less_one list_order.simps list_order_pos not_less numeral_3_eq_3 order_rev_length)
using impossible_case apply auto[1]
by (simp add: Suc_lessI min_callstack)
lemma min_exception : "(length i\<le>stack_lim) \<longrightarrow> \<not>(i =[Invalid_frame] \<or> i = []\<or>(i=[Exception])) \<longrightarrow> ([Exception],i) \<in> measures (list_order stack_lim)"
apply auto
apply (case_tac i)
apply simp
apply (case_tac "(order 0 (a#list))>(order 0 [Exception])")
apply (metis diff_self_eq_0 gr0_conv_Suc list_order_aux.simps(2) measures_less min_stack_lim)
apply (case_tac "(order 0 (a#list)) =(order 0 [Exception])")
apply (case_tac "(order 1 (a#list))>(order 1 [Exception])")
apply (case_tac "stack_lim<1")
using min_stack_lim apply linarith
apply (metis One_nat_def diff_Suc_1 get_gas_frame.simps(1) get_gas_frame.simps(2) in_measures(1) less_one list.distinct(1) list.size(3) list_order.simps list_order_aux.simps(1) list_order_aux.simps(2) list_order_pos list_order_rec1 min_invalid_frame not_less_iff_gr_or_eq order_rev_length)
using impossible_case apply auto[1]
by (simp add: Suc_lessI min_callstack)
(*_______________________Semantics______________________________________________________________*)
subsection \<open>Semantics\<close>
(* To model the jump destination we use a function returning an arbitrary natural *)
consts
any_jump:: "nat \<Rightarrow> nat"
(* The small step function of EVM *)
fun smallstep ::"call_stack \<Rightarrow> call_stack"
where
"smallstep ((Ok (g,pc,p,e))#l) = (case p.(pc) of
Stop \<Rightarrow> ((Halt (g,e))#l) |
Nil \<Rightarrow> (Exception#l)|
\<comment> \<open>Basic instruction : pc is increased and we consume the gas of the instuction (n)\<close>
Local(n) \<Rightarrow>( if (n>0) then (
if (n\<le>g) then
((Ok ((g-n),pc+1,p,e))#l)
else
(Exception#l))
else ([Invalid_frame]) )|
Jump(n) \<Rightarrow> if (n>0) then (let pj= any_jump 0 in
if (n\<le>g) then (if (pj<(length p)) then
((Ok (g-n,pj,p,e))#l)
else
(Exception#l))
else (Exception#l) )
else ([Invalid_frame]) |
\<comment> \<open>Call instruction call: gas is not consumed (yet) and we stack a frame_stack\<close>
Call (gcall,ccall,name) \<Rightarrow> if ((gcall>0)\<and>(ccall>0)\<and>(((length l)+1)<stack_lim)\<and>((gcall+ccall)\<le>g)) then
(case e(name) of
None \<Rightarrow>
\<comment> \<open>If the contract name is undefined then the contract is defined (i.e. create)
we stack a new frame in which we run an arbitrary new program.
In the environment, we associate the new name to this empty program (Some pnew). \<close>
(let pnew=(any_valid_program 0) in ((Ok (ccall,0,pnew,e( name := (Some pnew) )))#(Ok (g,pc,p,e))#l))
\<comment>\<open>Otherwise, we create a new frame where the current program becomes pcall \<close>
| (Some pcall) \<Rightarrow>((Ok (ccall,0,pcall,e))#(Ok (g,pc,p,e))#l))
else ( if (((length l)\<ge>(stack_lim - 1))|((gcall+ccall)>g)) then (Exception#l)
else ([Invalid_frame]) )
)"|
"smallstep ([Halt (g,e)]) = [Halt (g,e)] "|
"smallstep ([Exception]) =[Exception] "|
\<comment> \<open>Call return with an exception\<close>
"smallstep ( (Exception)#(Ok (g,pc,p,e))#l ) = (case p.(pc) of
\<comment>\<open>if running the call was impossible initially then we produce an invalid_frame
Only here for totality reasons (cannot happend)\<close>
Call(gcall,ccall,name) \<Rightarrow> (if ((gcall+ccall)>g) | (gcall\<le>0)|(ccall\<le>0) then [Invalid_frame]
\<comment> \<open>Normal call return with an exception: we consume the gas: gcall and ccall\<close>
else ((Ok ((g-gcall-ccall),(pc+1),p,e))#l))
| _ \<Rightarrow> [Invalid_frame] )"|
\<comment> \<open>Standard call return with a regular Halt event\<close>
"smallstep ((Halt (gend,ef))#(Ok (g,pc,p,e))#l) = (case p.(pc) of
Call(gcall,ccall,name) \<Rightarrow> if ((gcall+ccall)>g) then [Invalid_frame]
else if (gcall\<le>0) then [Invalid_frame]
else if (ccall\<le>0) then [Invalid_frame]
\<comment> \<open>This is coherent with the yellow paper: a call return is valid iff the returned gas is
lesser or equal to the gas sent for the call. Otherwise we throw an exception\<close>
else if (ccall<gend) then (Exception#(Ok (g,pc,p,e))#l)
\<comment>\<open>The resulting (modified) environment ef is passed to the current OK top stack_frame\<close>
else ((Ok ((g+gend-gcall-ccall),(pc+1),p,ef))#l)|
_ \<Rightarrow> [Invalid_frame] )"|
"smallstep l = [Invalid_frame]"
subsection \<open>Validity proof\<close>
lemma validMember: "(valid_prog p) \<longrightarrow> (List.member p i) \<longrightarrow> (valid_instr i)"
apply (induct p)
apply auto
apply (simp add: member_rec(2))
by (simp add: member_rec(1))
lemma validInstr: "(valid_prog p) \<longrightarrow> (pc < (length p)) \<longrightarrow> (valid_instr (p ! pc))"
by (meson in_set_member nth_mem validMember)
lemma notValidStackExceptionException: "\<not> (valid_stack (e#(Exception#l)))"
apply (case_tac e)
apply auto
done
lemma valid_stack_aux: "valid_stack_aux (e#l) \<longrightarrow> (valid_stack_aux l)"
apply (induct "(e#l)" rule:valid_stack_aux.induct)
apply auto
apply (case_tac "p2!pc2")
apply auto
apply (smt instr.simps(24) instr.simps(27))
apply (smt instr.simps(25) instr.simps(27))
apply (smt instr.simps(26) instr.simps(27) old.prod.case)
apply (smt instr.simps(27))
by (smt instr.simps(27) instr.simps(28))
lemma invalid_invalid: "\<not> (valid_stack (Invalid_frame#l))"
apply (induct l)
apply auto
done
lemma validstack_Ok_prog: "(valid_stack (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_prog p)"
apply (case_tac l)
apply auto
apply (case_tac a)
apply (case_tac x1)
apply (rename_tac g2 pc2 p2 e2)
apply auto[1]
apply (case_tac "p2!pc2")
apply (smt instr.simps(24) instr.simps(27))
apply (smt instr.simps(25) instr.simps(27))
apply (case_tac "x3")
apply (rename_tac gcall2 ccall2 name2)
apply auto[1]
apply (smt case_prod_conv instr.simps(26) instr.simps(27) valid_env.elims(2))
apply (smt instr.simps(27))
apply (smt instr.simps(27) instr.simps(28))
apply simp
apply simp
by simp
lemma validstack_Ok_env: "(valid_stack (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_env e)"
apply (case_tac l)
apply auto
apply (case_tac a)
apply (case_tac x1)
apply (rename_tac g2 pc2 p2 e2)
apply auto[1]
apply (case_tac "p2!pc2")
apply (smt instr.simps(24) instr.simps(27))
apply (smt instr.simps(25) instr.simps(27))
apply (case_tac "x3")
apply (rename_tac gcall2 ccall2 name2)
apply auto[1]
apply (smt case_prod_conv instr.simps(26) instr.simps(27) valid_env.elims(2))
apply (smt instr.simps(27))
apply (smt instr.simps(27) instr.simps(28))
apply simp
apply simp
by auto
lemma validstack_Ok_aux: "(valid_stack (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_stack_aux (Ok(g,pc,p,e)#l))"
apply (case_tac l)
apply auto
apply (case_tac a)
apply auto
done
lemma validstack_Ok_aux2: "(valid_stack_aux (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_stack (Ok(g,pc,p,e)#l))"
apply (case_tac l)
apply auto
apply (case_tac a)
apply auto
done
lemma validstack_Ok: "(valid_stack (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_stack (Ok(g2,pc2,p,e)#l))"
apply (case_tac l)
apply auto
apply (case_tac a)
apply auto
done
lemma validstack_Ok2: "(valid_env env2) \<longrightarrow> (valid_stack (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_stack (Ok(g,pc,p,env2)#l))"
apply (case_tac l)
apply auto
apply (case_tac "\<not>(valid_stack_aux (a#list))")
using valid_stack_aux validstack_Ok_aux apply blast
apply (case_tac a)
apply simp
apply (case_tac x1)
apply (rename_tac y g2 pc2 p2 env3)
apply simp
apply (case_tac "p2!pc2")
apply auto[1]
apply (smt instr.simps(24) instr.simps(27))
using instr.simps(27) apply fastforce
apply auto[1]
apply (meson gr_zeroI)
apply (meson neq0_conv)
using instr.simps(27) apply fastforce
using instr.simps(27) apply fastforce
using instr.simps(27) apply fastforce
apply simp
apply simp
apply simp
done
lemma validstack_exception_step: "(valid_stack (e#l)) \<longrightarrow> (valid_stack (Exception#l))"
apply (case_tac e)
apply auto
apply (case_tac l)
apply auto
apply (case_tac ac)
apply (case_tac x1)
apply auto
apply (case_tac "c ! baa ")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
using instr.simps(27) apply fastforce
apply (case_tac l)
apply auto
apply (case_tac aa)
apply auto
apply (case_tac "ad ! ac ")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
using instr.simps(27) apply fastforce
by (simp add: invalid_invalid)
lemma validstack_halt_step: "(valid_env env2) \<longrightarrow> (valid_stack (Ok(g,pc,p,e)#l)) \<longrightarrow> (valid_stack (Halt(g2,env2)#l))"
apply auto
apply (case_tac l)
apply auto
(* by case on the frame below *)
apply (case_tac a)
apply (case_tac x1)
apply auto
apply (case_tac "c ! ba ")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
using instr.simps(27) by fastforce
lemma validstack_exception_top: "valid_stack (Exception # l) \<longrightarrow> valid_stack (smallstep (Exception # l))"
apply (case_tac l)
apply simp
apply simp
apply (case_tac a)
apply simp
apply (case_tac x1)
(* (1) Ok on top *)
apply (rename_tac y g pc p e)
apply (case_tac "p.(pc)")
apply auto[1]
apply (simp add: validstack_exception_step)
(* call case *)
apply (case_tac x3)
apply (rename_tac z gcall ccall name)
apply (case_tac "(gcall>0)\<and>(ccall>0)\<and>(((length list)+1)<stack_lim)\<and>((gcall+ccall)\<le>g)")
apply auto[1]
using validstack_Ok validstack_Ok_aux2 apply blast
apply auto[1]
using validstack_Ok validstack_Ok_aux2 apply blast
apply auto
done
lemma validstack_halt_top: "valid_stack ((Halt x) # l) \<longrightarrow> valid_stack (smallstep ((Halt x) # l))"
apply (case_tac l)
apply auto
apply (metis frame.distinct(11) frame.distinct(7) get_gas_frame.elims smallstep.simps(2) valid_stack_aux.simps(5) validstack_Ok_aux)
apply (case_tac a)
apply simp
apply (case_tac x1)
apply simp
(* (1) Ok on top *)
apply (rename_tac y g pc p e)
apply (case_tac "p.(pc)")
apply auto[1]
using validstack_exception_step
apply force
using validstack_exception_step apply force
(* call case *)
apply (case_tac x3)
apply (rename_tac z gcall ccall name)
(* by case on the return value of Halt *)
apply (case_tac x)
apply (rename_tac gend ef)
apply (case_tac "(gcall>0)\<and>(ccall>0)\<and>(((length list)+1)<stack_lim)\<and>((gcall+ccall)\<le>g)\<and>(gend\<le>gcall)")
apply simp
apply (case_tac "\<not> (valid_stack (Ok (g, pc, p, e) # list))")
apply auto [1]
apply (simp add: validstack_Ok_aux2)
apply (simp add: validstack_Ok_aux2)
apply auto[1]
apply (case_tac list)
apply auto[1]
(* We first show that the sublist is necessarily valid *)
apply (case_tac "\<not> (valid_stack_aux list)")
using valid_stack_aux apply blast
(* We then show that the new environement ef is valid *)
apply (case_tac "\<not> (valid_env ef)")
apply simp
apply (case_tac "\<not> (valid_stack (Ok (g + gend - (gcall + ccall), Suc pc, p, e) # list))")
using validstack_Ok validstack_Ok_aux2 apply blast
using validstack_Ok2 apply blast
apply auto[1]
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (meson valid_env.elims(3) validstack_Ok validstack_Ok2 validstack_Ok_aux2)
apply (meson not_gr0)
apply (meson neq0_conv)
apply (meson valid_env.elims(3) validstack_Ok validstack_Ok2 validstack_Ok_aux2)
apply (case_tac x)
apply auto[1]
apply (case_tac x)
apply auto[1]
apply auto
apply (simp add: notValidStackExceptionException)
using valid_stack.simps(16) validstack_exception_step apply blast
using valid_stack.simps(17) validstack_exception_step by blast
(* If a stack is valid then we can replace the program of the top frame by any valid program *)
lemma validstack_any_valid_prog: "(valid_stack (Ok(g,pc,p,e)#l) \<and> (valid_prog p2)) \<longrightarrow> (valid_stack (Ok (g, i, p2, e(name := (Some p2))) #l))"
apply (induct l arbitrary: g pc p e p2 rule: valid_stack.induct )
apply auto
apply (case_tac "p!pc")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (case_tac "p!pc")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (meson not_gr0)
apply (case_tac "a=0")
apply auto
apply (case_tac "p!pc")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (case_tac "a=0")
apply auto
apply (case_tac "p!pc")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (meson valid_stack_aux.simps(11))
apply (case_tac "p!pc")
apply auto
apply (meson neq0_conv)
apply (meson neq0_conv)
apply (case_tac "a=0")
apply auto
done
subsubsection \<open>Main Validity Theorem for one step of semantics\<close>
lemma validstack_smallstep: "(valid_stack l)\<longrightarrow> (valid_stack (smallstep l))"
apply (case_tac l)
apply simp
apply simp
apply (case_tac a)
apply simp
apply (case_tac x1)
(* (1) Ok on top *)
apply (rename_tac y g pc p e)
apply (case_tac "p.(pc)")
apply auto[1]
apply (simp add: validstack_exception_step)
(* Local case *)
apply (rename_tac n)
apply (case_tac "n>0 \<and> n\<le>g")
apply auto[1]
using validstack_Ok apply blast
apply (case_tac "n\<le>0")
apply auto[1]
apply (case_tac "list=[]")
apply auto[1]
apply (metis instr.distinct(11) less_numeral_extra(3) validInstr valid_instr.simps(1))
apply (case_tac "valid_prog p")
apply (metis instr.distinct(11) less_numeral_extra(3) validInstr valid_instr.simps(1))
using validstack_Ok_prog apply blast
apply (simp add: validstack_exception_step)
(* Call case *)
apply (case_tac x3)
apply (rename_tac z gcall ccall name)
apply (case_tac "(gcall>0)\<and>(ccall>0)\<and>(((length list)+1)<stack_lim)\<and>((gcall+ccall)\<le>g)")
apply auto[1]
apply (case_tac "e(name)")
apply auto[1]
using validstack_Ok_env apply auto[1]
apply (case_tac "\<not>(valid_env e)")
apply auto[1]
apply auto[1]
(* This is the case where call mimic a create.
We first prove that adding a frame where the program is empty is valid and then we use the lemma validstack_any_valid_prog
stating that this program can be replaced by any (arbitrary) valid program *)
apply (case_tac "valid_stack ((Ok (ccall, 0, [], e(name := Some []))) # Ok (g, pc, p, e) # list)")
apply (meson any_valid_is_valid validstack_Ok2 validstack_Ok_env validstack_any_valid_prog)
apply auto[1]
apply (metis (full_types) option.simps(5) valid_prog.simps(1))
using validstack_Ok_aux apply auto[1]
apply auto[1]
apply (metis option.simps(5) valid_env.elims(2) validstack_Ok_env)
using validstack_Ok_env apply auto[1]
using validstack_Ok_aux apply blast
apply auto[1]
using validstack_exception_step apply blast
using validstack_exception_step apply blast
using validstack_exception_step apply blast
apply (simp add: validstack_exception_step)
apply (metis instr.distinct(15) less_numeral_extra(3) validInstr valid_instr.simps(4) validstack_Ok_prog)
using validstack_exception_step apply blast
using validstack_exception_step apply blast
apply (metis instr.distinct(15) less_numeral_extra(3) validInstr valid_instr.simps(4) validstack_Ok_prog)
using validstack_exception_step apply blast
apply (simp add: validstack_exception_step)
apply auto[1]
using validstack_Ok_env validstack_halt_step apply blast
(* Jump case *)
apply (case_tac x5)
apply simp
apply (metis instr.distinct(19) less_numeral_extra(3) validInstr valid_instr.simps(5) validstack_Ok_prog)
apply (smt instr.case(5) smallstep.simps(1) validstack_Ok validstack_exception_step zero_less_Suc)
(* (2) Exception on top *)
apply (simp add: validstack_exception_top)
(* (3) Halt on top *)
apply (simp add: validstack_halt_top)
(* (4) Invalid frame on top *)
by (simp add: invalid_invalid)
subsection \<open>Semantics : complete execution\<close>
function (sequential) execute :: "call_stack \<Rightarrow> frame"
where
"execute ([]) = Invalid_frame"|
"execute ([Halt (g,e)]) = (Halt (g,e))"|
"execute ([Exception]) = (Exception)"|
"execute ([Invalid_frame]) = Invalid_frame"|
"execute l = (if (length l > stack_lim) then Invalid_frame else execute (smallstep l)) "
apply pat_completeness
apply auto
done
(* --------------------- Examples of runs of the execute function --------------------------------*)
(* See the examples below, after the proofs *)
(*________________________________Termination proof________________________________________________*)
subsection \<open>Termination proof\<close>
(* _________________________ Some technical lemmas __________________________________________________*)
subsubsection \<open>Some technical lemmas\<close>
lemma ok_nil : "instr.Nil = mynth p pc \<longrightarrow> n = length l \<longrightarrow> (order n ((Ok (g,pc,p,e))#l))> (order n (smallstep ((Ok (g,pc,p,e))#l)))"
by (metis (no_types, lifting) Suc_1 add_Suc_right get_gas_frame.simps(2) get_gas_frame.simps(4) instr.simps(24) le_imp_less_Suc less_add_Suc2 less_imp_le_nat numeral_3_eq_3 numerals(2) order_rev_length smallstep.simps(1))
lemma ok_local_caseinf : "x \<le> 0 \<longrightarrow> Local x = mynth p pc \<longrightarrow> n = length l \<longrightarrow> smallstep (Ok (g, pc, p, e) # l) = [Invalid_frame]"
by (smt instr.simps(25) le_zero_eq less_numeral_extra(3) smallstep.simps(1))
lemma ok_local_casesup : " \<not> x \<le> 0 \<longrightarrow>
\<not> g < x \<longrightarrow> Local x = mynth p pc \<longrightarrow> (smallstep (Ok (g, pc, p, e) # l)) = ((Ok (g-x,pc+1,p,e))#l) "
by (smt instr.simps(25) leI smallstep.simps(1))
lemma ok_local_casesup_2 : "\<not> x \<le> 0 \<longrightarrow>
\<not> g < x \<longrightarrow> Local x = mynth p pc \<longrightarrow> get_gas_frame (((Ok (g,pc,p,e))#l) ! 0) > get_gas_frame ((smallstep ( (Ok (g,pc,p,e))#l)) ! 0 )"
using ok_local_casesup by auto
lemma ok_local : "Local x = mynth p pc \<longrightarrow> n = length l \<longrightarrow> (order n ((Ok (g,pc,p,e))#l))> (order n (smallstep ((Ok (g,pc,p,e))#l)))"
apply (case_tac "x\<le>0")
apply (metis (no_types, lifting) One_nat_def Suc_less_eq get_gas_frame.simps(1) get_gas_frame.simps(4) length_greater_0_conv lessI less_add_Suc2 less_trans list.size(3) numeral_3_eq_3 ok_local_caseinf order.simps(3) order_rev_length)
apply (case_tac "x>g")
apply (smt Suc_1 add_Suc_right get_gas_frame.simps(2) get_gas_frame.simps(4) instr.simps(25) le_less_trans lessI less_add_Suc2 less_or_eq_imp_le not_le numeral_3_eq_3 numerals(2) order_rev_length smallstep.simps(1))
by (metis (no_types) nth_Cons_0 ok_local_casesup ok_local_casesup_2 order_min_diff)
lemma ok_jump_aux : " (n>0) \<longrightarrow> (n\<le>g)\<longrightarrow> Jump(n) = mynth p pc \<longrightarrow> ((\<exists> pj. (pj<(length p)) \<longrightarrow> (smallstep ((Ok (g,pc,p,e))#l)) = ((Ok (g-n,pj,p,e))#l)) \<or> ((smallstep ((Ok (g,pc,p,e))#l)) = Exception#l))"
by blast
lemma ok_jump_case1 : " (n>0) \<longrightarrow> (n\<le>g)\<longrightarrow>(pj<(length p))\<longrightarrow> Jump(n) = mynth p pc \<longrightarrow> (len = length l) \<longrightarrow> (order len (smallstep ((Ok (g,pc,p,e))#l))) < (order len ((Ok (g,pc,p,e))#l))"
apply (case_tac "(\<exists> pj. (pj<(length p)) \<longrightarrow> (smallstep ((Ok (g,pc,p,e))#l)) = ((Ok (g-n,pj,p,e))#l))")
apply (smt One_nat_def add_mono_thms_linordered_field(1) get_gas_frame.simps(2) get_gas_frame.simps(4) instr.case(5) le_add_diff_inverse less_Suc_eq less_add_same_cancel2 not_add_less2 not_less_eq numeral_3_eq_3 order_rev_length smallstep.simps(1))
by blast
lemma ok_jump_subcase : " n> 0 \<longrightarrow> Jump (n) = mynth p pc \<longrightarrow> len = length l \<longrightarrow> (order len (smallstep ((Ok (g,pc,p,e))#l))) < (order len ((Ok (g,pc,p,e))#l))"
apply (case_tac "n\<le>g")
apply (case_tac "pj < (length p) ")
using ok_jump_case1 apply blast
apply (metis instr.distinct(19) mynth.simps ok_jump_case1)
by (smt One_nat_def get_gas_frame.simps(2) get_gas_frame.simps(4) instr.case(5) less_Suc_eq not_add_less2 not_less_eq numeral_3_eq_3 order_rev_length smallstep.simps(1))