-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmeta.yml
129 lines (115 loc) · 3.57 KB
/
meta.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
fullname: Apery
shortname: apery
organization: coq-community
opam_name: coq-mathcomp-apery
community: true
action: true
coqdoc: false
synopsis: >-
A formally verified proof in Coq, by computer algebra, that ζ(3) is irrational
description: |-
This project contains a formal proof that the real number ζ(3),
also known as Apéry's constant, is irrational. It follows roughly
Apéry's original sketch of a proof. However, the recurrence
relations constituting the crux of the proof have been guessed by a
computer algebra program (in this case in Maple/Algolib). These
relations are formally checked a posteriori, so that Coq's kernel
remains the sole trusted code base.
publications:
- pub_url: https://arxiv.org/abs/1912.06611
pub_title: A Formal Proof of the Irrationality of ζ(3)
- pub_url: https://hal.inria.fr/hal-00984057
pub_title: A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3)
pub_doi: 10.1007/978-3-319-08970-6_11
- pub_url: https://drops.dagstuhl.de/opus/volltexte/2022/16738/pdf/LIPIcs-ITP-2022-29.pdf
pub_title: Reflexive Tactics for Algebra, Revisited
pub_doi: 10.4230/LIPIcs.ITP.2022.29
authors:
- name: Frédéric Chyzak
initial: true
- name: Assia Mahboubi
initial: true
- name: Thomas Sibut-Pinote
initial: true
maintainers:
- name: Assia Mahboubi
nickname: amahboubi
- name: Kazuhiko Sakaguchi
nickname: pi8027
opam-file-maintainer: assia.mahboubi@inria.fr
opam-file-version: dev
license:
fullname: CeCILL-C
identifier: CECILL-C
supported_coq_versions:
text: 8.16 or later
opam: '{(>= "8.16" & < "8.20~") | (= "dev")}'
tested_coq_opam_versions:
- version: '2.1.0-coq-8.16'
repo: 'mathcomp/mathcomp'
- version: '2.1.0-coq-8.17'
repo: 'mathcomp/mathcomp'
- version: '2.1.0-coq-8.18'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.16'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.17'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.18'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.19'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-dev'
repo: 'mathcomp/mathcomp'
- version: 'coq-8.18'
repo: 'mathcomp/mathcomp-dev'
- version: 'coq-8.19'
repo: 'mathcomp/mathcomp-dev'
- version: 'coq-dev'
repo: 'mathcomp/mathcomp-dev'
dependencies:
- opam:
name: coq-mathcomp-ssreflect
version: '{(>= "2.1" & < "2.3~") | (= "dev")}'
description: |-
[MathComp ssreflect 2.1 or later](https://math-comp.github.io)
- opam:
name: coq-mathcomp-algebra
description: |-
[MathComp algebra](https://math-comp.github.io)
- opam:
name: coq-mathcomp-field
description: |-
[MathComp field](https://math-comp.github.io)
- opam:
name: coq-coqeal
version: '{>= "2.0.0"}'
description: |-
[CoqEAL 2.0.0 or later](https://github.com/coq-community/coqeal)
- opam:
name: coq-mathcomp-real-closed
version: '{>= "2.0.0"}'
description: |-
[MathComp real closed fields 2.0.0 or later](https://github.com/math-comp/real-closed)
- opam:
name: coq-mathcomp-bigenough
version: '{>= "1.0.1"}'
description: |-
[MathComp bigenough 1.0.1 or later](https://github.com/math-comp/bigenough)
- opam:
name: coq-mathcomp-zify
version: '{>= "1.5.0"}'
description: |-
[Mczify](https://github.com/math-comp/mczify) 1.5.0 or later
- opam:
name: coq-mathcomp-algebra-tactics
version: '{>= "1.2.2"}'
description: |-
[Algebra Tactics](https://github.com/math-comp/algebra-tactics) 1.2.2 or later
namespace: mathcomp.apery
keywords:
- name: apery recurrence
- name: irrationality
- name: creative telescoping
categories:
- name: Mathematics/Arithmetic and Number Theory/Number theory