-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNia.v
886 lines (872 loc) · 63.2 KB
/
Nia.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
(* -*- coqchk-prog-args: ("-bytecode-compiler" "yes") -*- *)
From Coq Require Import ZArith.
From Coq Require Import Lia.
Open Scope Z_scope.
(** Add [Z.to_euclidean_division_equations] to the end of [zify], just for this
file. *)
Require Zify.
Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations.
Lemma Z_zerop_or x : x = 0 \/ x <> 0. Proof. apply Z.eq_decidable. Qed.
Lemma Z_eq_dec_or (x y : Z) : x = y \/ x <> y. Proof. apply Z.eq_decidable. Qed.
Ltac with_mod tac :=
match goal with
| [ |- context[?x mod ?y] ] => tac x y
| [ H : context[?x mod ?y] |- _ ] => tac x y
end.
Ltac with_rem tac :=
match goal with
| [ |- context[Z.rem ?x ?y] ] => tac x y
| [ H : context[Z.rem ?x ?y] |- _ ] => tac x y
end.
Ltac with_div tac :=
match goal with
| [ |- context[?x / ?y] ] => tac x y
| [ H : context[?x / ?y] |- _ ] => tac x y
end.
Ltac with_quot tac :=
match goal with
| [ |- context[Z.quot ?x ?y] ] => tac x y
| [ H : context[Z.quot ?x ?y] |- _ ] => tac x y
end.
Ltac with_mod_rem tac := first [ with_mod tac | with_rem tac ].
Ltac with_div_quot tac := first [ with_div tac | with_quot tac ].
Ltac with_div_mod tac := first [ with_div tac | with_mod tac ].
Ltac with_quot_rem tac := first [ with_quot tac | with_rem tac ].
Ltac pose_eq_fact x y := Z.euclidean_division_equations_pose_eq_fact x y.
Ltac saturate_mod_div_0 :=
repeat first [ with_mod_rem ltac:(fun x y => pose_eq_fact (x / y) 0)
| with_div_quot ltac:(fun x y => pose_eq_fact y 0) ].
Ltac saturate_quot_div_0 :=
repeat first [ with_quot ltac:(fun x y => pose_eq_fact (x ÷ y) 0)
| with_div ltac:(fun x y => pose_eq_fact (x / y) 0) ].
Ltac saturate_mod_div_eq :=
let with_the_quot tac := first [ with_div_mod ltac:(fun x y => tac (x / y))
| with_quot_rem ltac:(fun x y => tac (x ÷ y)) ] in
repeat with_the_quot ltac:(fun q => with_the_quot ltac:(fun q' => pose_eq_fact q q')).
Ltac destr_step :=
match goal with
| [ H : and _ _ |- _ ] => destruct H
| [ H : or _ _ |- _ ] => destruct H
end.
Ltac t := intros; saturate_mod_div_0; try nia.
Ltac t_zero := intros; saturate_mod_div_0; saturate_quot_div_0; try nia.
(* sometimes this next one is faster? *)
Ltac t_zero_subst := intros; saturate_mod_div_0; saturate_quot_div_0; repeat destr_step; try nia.
Ltac t_eq := intros; saturate_mod_div_eq; try nia.
Ltac t_all := intros; saturate_mod_div_0; saturate_mod_div_eq; try nia.
Example mod_0_l: forall x : Z, 0 mod x = 0. Proof. t. Qed.
Example mod_0_r: forall x : Z, x mod 0 = x. Proof. intros; nia. Qed.
Example Z_mod_same_full: forall a : Z, a mod a = 0. Proof. t. Qed.
Example Zmod_0_l: forall a : Z, 0 mod a = 0. Proof. t. Qed.
Example Zmod_0_r: forall a : Z, a mod 0 = a. Proof. intros; nia. Qed.
Example mod_mod_same: forall x y : Z, (x mod y) mod y = x mod y. Proof. t. Qed.
Example Zmod_mod: forall a n : Z, (a mod n) mod n = a mod n. Proof. t. Qed.
Example Zmod_1_r: forall a : Z, a mod 1 = 0. Proof. intros; nia. Qed.
Example Zmod_div: forall a b : Z, a mod b / b = 0. Proof. intros; nia. Qed.
Example Z_mod_1_r: forall a : Z, a mod 1 = 0. Proof. intros; nia. Qed.
Example Z_mod_same: forall a : Z, a > 0 -> a mod a = 0. Proof. t. Qed.
Example Z_mod_mult: forall a b : Z, (a * b) mod b = 0. Proof. intros; nia. Qed.
Example Z_mod_same': forall a : Z, a <> 0 -> a mod a = 0. Proof. t. Qed.
Example Z_mod_0_l: forall a : Z, a <> 0 -> 0 mod a = 0. Proof. t. Qed.
Example Zmod_opp_opp: forall a b : Z, - a mod - b = - (a mod b). Proof. t_eq. Qed.
Example Z_mod_le: forall a b : Z, 0 <= a -> 0 < b -> a mod b <= a. Proof. t. Qed.
Example Zmod_le: forall a b : Z, 0 < b -> 0 <= a -> a mod b <= a. Proof. t. Qed.
Example Zplus_mod_idemp_r: forall a b n : Z, (b + a mod n) mod n = (b + a) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((b + a mod n) / n = (b / n) + (b mod n + a mod n) / n)
by nia.
assert ((b + a) / n = (b / n) + (a / n) + (b mod n + a mod n) / n)
by nia.
nia.
Qed.
Example Zplus_mod_idemp_l: forall a b n : Z, (a mod n + b) mod n = (a + b) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((a mod n + b) / n = (b / n) + (b mod n + a mod n) / n) by nia.
assert ((a + b) / n = (b / n) + (a / n) + (b mod n + a mod n) / n) by nia.
nia.
Qed.
Example Zmult_mod_distr_r: forall a b c : Z, (a * c) mod (b * c) = a mod b * c.
Proof.
intros a b c.
destruct (Z_zerop c); try nia.
t_eq.
Qed.
Example Z_mod_zero_opp_full: forall a b : Z, a mod b = 0 -> - a mod b = 0.
Proof.
intros a b.
pose proof (Z_eq_dec_or (a/b) (-(-a/b))).
nia.
Qed.
Example Zmult_mod_idemp_r: forall a b n : Z, (b * (a mod n)) mod n = (b * a) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((b * (a mod n)) / n = (b / n) * (a mod n) + ((b mod n) * (a mod n)) / n)
by nia.
assert ((b * a) / n = (b / n) * (a / n) * n + (b / n) * (a mod n) + (b mod n) * (a / n) + ((b mod n) * (a mod n)) / n)
by nia.
nia.
Qed.
Example Zmult_mod_idemp_l: forall a b n : Z, (a mod n * b) mod n = (a * b) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert (((a mod n) * b) / n = (b / n) * (a mod n) + ((b mod n) * (a mod n)) / n)
by nia.
assert ((a * b) / n = (b / n) * (a / n) * n + (b / n) * (a mod n) + (b mod n) * (a / n) + ((b mod n) * (a mod n)) / n)
by nia.
nia.
Qed.
Example Zminus_mod_idemp_r: forall a b n : Z, (a - b mod n) mod n = (a - b) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((a - b mod n) / n = a / n + ((a mod n) - (b mod n)) / n) by nia.
assert ((a - b) / n = a / n - b / n + ((a mod n) - (b mod n)) / n) by nia.
nia.
Qed.
Example Zminus_mod_idemp_l: forall a b n : Z, (a mod n - b) mod n = (a - b) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((a mod n - b) / n = - (b / n) + ((a mod n) - (b mod n)) / n) by nia.
assert ((a - b) / n = a / n - b / n + ((a mod n) - (b mod n)) / n) by nia.
nia.
Qed.
Example Z_mod_plus_full: forall a b c : Z, (a + b * c) mod c = a mod c.
Proof.
intros a b c.
pose proof (Z_eq_dec_or ((a+b*c)/c) (a/c + b)).
nia.
Qed.
Example Zmult_mod_distr_l: forall a b c : Z, (c * a) mod (c * b) = c * (a mod b).
Proof.
intros a b c.
destruct (Z_zerop c); try nia.
t_eq.
Qed.
Example Z_mod_zero_opp_r: forall a b : Z, a mod b = 0 -> a mod - b = 0.
Proof.
intros a b.
pose proof (Z_eq_dec_or (a/b) (-(a/-b))).
nia.
Qed.
Example Zmod_1_l: forall a : Z, 1 < a -> 1 mod a = 1. Proof. t. Qed.
Example Z_mod_1_l: forall a : Z, 1 < a -> 1 mod a = 1. Proof. t. Qed.
Example Z_mod_mul: forall a b : Z, b <> 0 -> (a * b) mod b = 0. Proof. intros; nia. Qed.
Example Zminus_mod: forall a b n : Z, (a - b) mod n = (a mod n - b mod n) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((a - b) / n = (a / n) - (b / n) + ((a mod n) - (b mod n)) / n) by nia.
nia.
Qed.
Example Zplus_mod: forall a b n : Z, (a + b) mod n = (a mod n + b mod n) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((a + b) / n = (a / n) + (b / n) + ((a mod n) + (b mod n)) / n) by nia.
nia.
Qed.
Example Zmult_mod: forall a b n : Z, (a * b) mod n = (a mod n * (b mod n)) mod n.
Proof.
intros a b n.
destruct (Z_zerop n); [ subst; nia | ].
assert ((a * b) / n = n * (a / n) * (b / n) + (a mod n) * (b / n) + (a / n) * (b mod n) + ((a mod n) * (b mod n)) / n)
by nia.
nia.
Qed.
Example Z_mod_mod: forall a n : Z, n <> 0 -> (a mod n) mod n = a mod n. Proof. t. Qed.
Example Z_mod_div: forall a b : Z, b <> 0 -> a mod b / b = 0. Proof. intros; nia. Qed.
Example Z_div_exact_full_1: forall a b : Z, a = b * (a / b) -> a mod b = 0. Proof. intros; nia. Qed.
Example Z_mod_pos_bound: forall a b : Z, 0 < b -> 0 <= a mod b < b. Proof. intros; nia. Qed.
Example Z_mod_sign_mul: forall a b : Z, b <> 0 -> 0 <= a mod b * b. Proof. intros; nia. Qed.
Example Z_mod_neg_bound: forall a b : Z, b < 0 -> b < a mod b <= 0. Proof. intros; nia. Qed.
Example Z_mod_neg: forall a b : Z, b < 0 -> b < a mod b <= 0. Proof. intros; nia. Qed.
Example div_mod_small: forall x y : Z, 0 <= x < y -> x mod y = x. Proof. t. Qed.
Example Zmod_small: forall a n : Z, 0 <= a < n -> a mod n = a. Proof. t. Qed.
Example Z_mod_small: forall a b : Z, 0 <= a < b -> a mod b = a. Proof. t. Qed.
Example Z_div_zero_opp_full: forall a b : Z, a mod b = 0 -> - a / b = - (a / b). Proof. intros; nia. Qed.
Example Z_mod_zero_opp: forall a b : Z, b > 0 -> a mod b = 0 -> - a mod b = 0.
Proof.
intros a b.
pose proof (Z_eq_dec_or (a/b) (-(-a/b))).
nia.
Qed.
Example Z_div_zero_opp_r: forall a b : Z, a mod b = 0 -> a / - b = - (a / b). Proof. intros; nia. Qed.
Example Z_mod_lt: forall a b : Z, b > 0 -> 0 <= a mod b < b. Proof. intros; nia. Qed.
Example Z_mod_opp_opp: forall a b : Z, b <> 0 -> - a mod - b = - (a mod b). Proof. t_eq. Qed.
Example Z_mod_bound_pos: forall a b : Z, 0 <= a -> 0 < b -> 0 <= a mod b < b. Proof. intros; nia. Qed.
Example Z_mod_opp_l_z: forall a b : Z, b <> 0 -> a mod b = 0 -> - a mod b = 0.
Proof.
intros a b.
pose proof (Z_eq_dec_or (a/b) (-(-a/b))).
nia.
Qed.
Example Z_mod_plus: forall a b c : Z, c > 0 -> (a + b * c) mod c = a mod c.
Proof.
intros a b c.
pose proof (Z_eq_dec_or ((a+b*c)/c) (a/c+b)).
nia.
Qed.
Example Z_mod_opp_r_z: forall a b : Z, b <> 0 -> a mod b = 0 -> a mod - b = 0.
Proof.
intros a b.
pose proof (Z_eq_dec_or (a/b) (-(a/-b))).
nia.
Qed.
Example Zmod_eq: forall a b : Z, b > 0 -> a mod b = a - a / b * b. Proof. intros; nia. Qed.
Example Z_div_exact_2: forall a b : Z, b > 0 -> a mod b = 0 -> a = b * (a / b). Proof. intros; nia. Qed.
Example Z_div_mod_eq: forall a b : Z, b > 0 -> a = b * (a / b) + a mod b. Proof. intros; nia. Qed.
Example Z_div_exact_1: forall a b : Z, b > 0 -> a = b * (a / b) -> a mod b = 0. Proof. intros; nia. Qed.
Example Z_mod_add: forall a b c : Z, c <> 0 -> (a + b * c) mod c = a mod c.
Proof.
intros a b c.
pose proof (Z_eq_dec_or ((a+b*c)/c) (a/c+b)).
nia.
Qed.
Example Z_mod_nz_opp_r: forall a b : Z, a mod b <> 0 -> a mod - b = a mod b - b.
Proof.
intros a b.
assert (b <> 0 -> a mod b <> 0 -> a / -b = -(a/b)-1) by t.
nia.
Qed.
Example Z_mul_mod_idemp_l: forall a b n : Z, n <> 0 -> (a mod n * b) mod n = (a * b) mod n.
Proof.
intros a b n ?.
assert (((a mod n) * b) / n = (b / n) * (a mod n) + ((b mod n) * (a mod n)) / n)
by nia.
assert ((a * b) / n = (b / n) * (a / n) * n + (b / n) * (a mod n) + (b mod n) * (a / n) + ((b mod n) * (a mod n)) / n)
by nia.
nia.
Qed.
Example Z_mod_nz_opp_full: forall a b : Z, a mod b <> 0 -> - a mod b = b - a mod b.
Proof.
intros a b.
assert (b <> 0 -> a mod b <> 0 -> -a/b = -1-a/b) by nia.
nia.
Qed.
Example Z_add_mod_idemp_r: forall a b n : Z, n <> 0 -> (a + b mod n) mod n = (a + b) mod n.
Proof.
intros a b n ?.
assert ((a + b mod n) / n = (a / n) + (a mod n + b mod n) / n) by nia.
assert ((a + b) / n = (a / n) + (b / n) + (a mod n + b mod n) / n) by nia.
nia.
Qed.
Example Z_add_mod_idemp_l: forall a b n : Z, n <> 0 -> (a mod n + b) mod n = (a + b) mod n.
Proof.
intros a b n ?.
assert ((a mod n + b) / n = (b / n) + (a mod n + b mod n) / n) by nia.
assert ((a + b) / n = (a / n) + (b / n) + (a mod n + b mod n) / n) by nia.
nia.
Qed.
Example Z_mul_mod_idemp_r: forall a b n : Z, n <> 0 -> (a * (b mod n)) mod n = (a * b) mod n.
Proof.
intros a b n ?.
assert ((a * (b mod n)) / n = (a / n) * (b mod n) + ((a mod n) * (b mod n)) / n)
by nia.
assert ((a * b) / n = (b / n) * (a / n) * n + (b / n) * (a mod n) + (b mod n) * (a / n) + ((a mod n) * (b mod n)) / n)
by nia.
nia.
Qed.
Example Zmod_eq_full: forall a b : Z, b <> 0 -> a mod b = a - a / b * b. Proof. intros; nia. Qed.
Example div_eq: forall x y : Z, y <> 0 -> x mod y = 0 -> x / y * y = x. Proof. intros; nia. Qed.
Example Z_mod_eq: forall a b : Z, b <> 0 -> a mod b = a - b * (a / b). Proof. intros; nia. Qed.
Example Z_mod_sign_nz: forall a b : Z, b <> 0 -> a mod b <> 0 -> Z.sgn (a mod b) = Z.sgn b. Proof. intros; nia. Qed.
Example Z_div_exact_full_2: forall a b : Z, b <> 0 -> a mod b = 0 -> a = b * (a / b). Proof. intros; nia. Qed.
Example Z_div_mod: forall a b : Z, b <> 0 -> a = b * (a / b) + a mod b. Proof. intros; nia. Qed.
Example Z_add_mod: forall a b n : Z, n <> 0 -> (a + b) mod n = (a mod n + b mod n) mod n.
Proof.
intros a b n ?.
assert ((a + b) / n = (a / n) + (b / n) + (a mod n + b mod n) / n) by nia.
nia.
Qed.
Example Z_mul_mod: forall a b n : Z, n <> 0 -> (a * b) mod n = (a mod n * (b mod n)) mod n.
Proof.
intros a b n ?.
assert ((a * b) / n = (b / n) * (a / n) * n + (b / n) * (a mod n) + (b mod n) * (a / n) + ((a mod n) * (b mod n)) / n)
by nia.
nia.
Qed.
Example Z_div_exact: forall a b : Z, b <> 0 -> a = b * (a / b) <-> a mod b = 0. Proof. intros; nia. Qed.
Example Z_div_opp_l_z: forall a b : Z, b <> 0 -> a mod b = 0 -> - a / b = - (a / b). Proof. intros; nia. Qed.
Example Z_div_opp_r_z: forall a b : Z, b <> 0 -> a mod b = 0 -> a / - b = - (a / b). Proof. intros; nia. Qed.
Example Z_mod_opp_r_nz: forall a b : Z, b <> 0 -> a mod b <> 0 -> a mod - b = a mod b - b.
Proof.
intros a b.
assert (b <> 0 -> a mod b <> 0 -> a/(-b) = -1-a/b) by nia.
nia.
Qed.
Example Z_mul_mod_distr_r: forall a b c : Z, b <> 0 -> c <> 0 -> (a * c) mod (b * c) = a mod b * c. Proof. t_eq. Qed.
Example Z_mul_mod_distr_l: forall a b c : Z, b <> 0 -> c <> 0 -> (c * a) mod (c * b) = c * (a mod b). Proof. t_eq. Qed.
Example Z_mod_opp_l_nz: forall a b : Z, b <> 0 -> a mod b <> 0 -> - a mod b = b - a mod b.
Proof.
intros a b.
assert (b <> 0 -> a mod b <> 0 -> -a/b = -1-a/b) by nia.
nia.
Qed.
Example mod_eq: forall x x' y : Z, x / y = x' / y -> x mod y = x' mod y -> y <> 0 -> x = x'. Proof. intros; nia. Qed.
Example Z_div_nz_opp_r: forall a b : Z, b <> 0 -> a mod b <> 0 -> a / - b = - (a / b) - 1. Proof. intros; nia. Qed.
Example Z_div_nz_opp_full: forall a b : Z, b <> 0 -> a mod b <> 0 -> - a / b = - (a / b) - 1. Proof. intros; nia. Qed.
Example Zmod_unique: forall a b q r : Z, 0 <= r < b -> a = b * q + r -> r = a mod b. Proof. intros; nia. Qed.
Example Z_mod_unique_neg: forall a b q r : Z, b < r <= 0 -> a = b * q + r -> r = a mod b. Proof. intros; nia. Qed.
Example Z_mod_unique_pos: forall a b q r : Z, 0 <= r < b -> a = b * q + r -> r = a mod b. Proof. intros; nia. Qed.
Example Z_rem_mul_r: forall a b c : Z, b <> 0 -> 0 < c -> a mod (b * c) = a mod b + b * ((a / b) mod c). Proof. t_eq. Qed.
Example Z_mod_bound_or: forall a b : Z, b <> 0 -> 0 <= a mod b < b \/ b < a mod b <= 0. Proof. intros; nia. Qed.
Example Z_div_opp_l_nz: forall a b : Z, b <> 0 -> a mod b <> 0 -> - a / b = - (a / b) - 1. Proof. intros; nia. Qed.
Example Z_div_opp_r_nz: forall a b : Z, b <> 0 -> a mod b <> 0 -> a / - b = - (a / b) - 1. Proof. intros; nia. Qed.
Example Z_mod_small_iff: forall a b : Z, b <> 0 -> a mod b = a <-> 0 <= a < b \/ b < a <= 0. Proof. t. Qed.
Example Z_mod_unique: forall a b q r : Z, 0 <= r < b \/ b < r <= 0 -> a = b * q + r -> r = a mod b. Proof. intros. nia. Qed.
Example Z_opp_mod_bound_or: forall a b : Z, b <> 0 -> 0 <= - (a mod b) < - b \/ - b < - (a mod b) <= 0. Proof. intros; nia. Qed.
Example Zdiv_0_r: forall a : Z, a / 0 = 0. Proof. intros; nia. Qed.
Example Zdiv_0_l: forall a : Z, 0 / a = 0. Proof. intros; nia. Qed.
Example Z_div_1_r: forall a : Z, a / 1 = a. Proof. intros; nia. Qed.
Example Zdiv_1_r: forall a : Z, a / 1 = a. Proof. intros; nia. Qed.
Example Zdiv_opp_opp: forall a b : Z, - a / - b = a / b. Proof. intros; nia. Qed.
Example Z_div_0_l: forall a : Z, a <> 0 -> 0 / a = 0. Proof. intros; nia. Qed.
Example Z_div_pos: forall a b : Z, b > 0 -> 0 <= a -> 0 <= a / b. Proof. intros; nia. Qed.
Example Z_div_ge0: forall a b : Z, b > 0 -> a >= 0 -> a / b >= 0. Proof. intros; nia. Qed.
Example Z_div_pos': forall a b : Z, 0 <= a -> 0 < b -> 0 <= a / b. Proof. intros; nia. Qed.
Example Z_mult_div_ge: forall a b : Z, b > 0 -> b * (a / b) <= a. Proof. intros; nia. Qed.
Example Z_mult_div_ge_neg: forall a b : Z, b < 0 -> b * (a / b) >= a. Proof. intros; nia. Qed.
Example Z_mul_div_le: forall a b : Z, 0 < b -> b * (a / b) <= a. Proof. intros; nia. Qed.
Example Z_mul_div_ge: forall a b : Z, b < 0 -> a <= b * (a / b). Proof. intros; nia. Qed.
Example Z_div_same: forall a : Z, a > 0 -> a / a = 1. Proof. intros; nia. Qed.
Example Z_div_mult: forall a b : Z, b > 0 -> a * b / b = a. Proof. intros; nia. Qed.
Example Z_mul_succ_div_gt: forall a b : Z, 0 < b -> a < b * Z.succ (a / b). Proof. intros; nia. Qed.
Example Z_mul_succ_div_lt: forall a b : Z, b < 0 -> b * Z.succ (a / b) < a. Proof. intros; nia. Qed.
Example Zdiv_1_l: forall a : Z, 1 < a -> 1 / a = 0. Proof. intros; nia. Qed.
Example Z_div_1_l: forall a : Z, 1 < a -> 1 / a = 0. Proof. intros; nia. Qed.
Example Z_div_str_pos: forall a b : Z, 0 < b <= a -> 0 < a / b. Proof. intros; nia. Qed.
Example Z_div_ge: forall a b c : Z, c > 0 -> a >= b -> a / c >= b / c. Proof. intros; nia. Qed.
Example Z_div_mult_full: forall a b : Z, b <> 0 -> a * b / b = a. Proof. intros; nia. Qed.
Example Z_div_same': forall a : Z, a <> 0 -> a / a = 1. Proof. intros; nia. Qed.
Example Zdiv_lt_upper_bound: forall a b q : Z, 0 < b -> a < q * b -> a / b < q. Proof. intros; nia. Qed.
Example Z_div_mul: forall a b : Z, b <> 0 -> a * b / b = a. Proof. intros; nia. Qed.
Example Z_div_lt: forall a b : Z, 0 < a -> 1 < b -> a / b < a. Proof. intros; nia. Qed.
Example Z_div_le_mono: forall a b c : Z, 0 < c -> a <= b -> a / c <= b / c. Proof. intros; nia. Qed.
Example Zdiv_sgn: forall a b : Z, 0 <= Z.sgn (a / b) * Z.sgn a * Z.sgn b. Proof. intros; nia. Qed.
Example Z_div_same_full: forall a : Z, a <> 0 -> a / a = 1. Proof. intros; nia. Qed.
Example Z_div_lt_upper_bound: forall a b q : Z, 0 < b -> a < b * q -> a / b < q. Proof. intros; nia. Qed.
Example Z_div_le: forall a b c : Z, c > 0 -> a <= b -> a / c <= b / c. Proof. intros; nia. Qed.
Example Z_div_le_lower_bound: forall a b q : Z, 0 < b -> b * q <= a -> q <= a / b. Proof. intros; nia. Qed.
Example Zdiv_le_lower_bound: forall a b q : Z, 0 < b -> q * b <= a -> q <= a / b. Proof. intros; nia. Qed.
Example Zdiv_le_upper_bound: forall a b q : Z, 0 < b -> a <= q * b -> a / b <= q. Proof. intros; nia. Qed.
Example Z_div_le_upper_bound: forall a b q : Z, 0 < b -> a <= b * q -> a / b <= q. Proof. intros; nia. Qed.
Example Z_div_small: forall a b : Z, 0 <= a < b -> a / b = 0. Proof. intros; nia. Qed.
Example Zdiv_small: forall a b : Z, 0 <= a < b -> a / b = 0. Proof. intros; nia. Qed.
Example Z_div_opp_opp: forall a b : Z, b <> 0 -> - a / - b = a / b. Proof. intros; nia. Qed.
Example Zdiv_mult_cancel_r: forall a b c : Z, c <> 0 -> a * c / (b * c) = a / b. Proof. intros; nia. Qed.
Example Z_div_unique_exact: forall a b q : Z, b <> 0 -> a = b * q -> q = a / b. Proof. intros; nia. Qed.
Example Zdiv_mult_cancel_l: forall a b c : Z, c <> 0 -> c * a / (c * b) = a / b. Proof. intros; nia. Qed.
Example Zdiv_le_compat_l: forall p q r : Z, 0 <= p -> 0 < q < r -> p / r <= p / q.
Proof.
intros p q r ??.
assert (p mod r <= p mod q \/ p mod q <= p mod r) by nia.
assert (0 <= p / r) by nia.
assert (0 <= p / q) by nia.
nia.
Qed.
Example Z_div_le_compat_l: forall p q r : Z, 0 <= p -> 0 < q <= r -> p / r <= p / q.
Proof.
intros p q r ??.
assert (p mod r <= p mod q \/ p mod q <= p mod r) by nia.
assert (0 <= p / r) by nia.
assert (0 <= p / q) by nia.
nia.
Qed.
Example Zdiv_Zdiv: forall a b c : Z, 0 <= b -> 0 <= c -> a / b / c = a / (b * c). Proof. intros; nia. Qed.
Example Z_div_plus: forall a b c : Z, c > 0 -> (a + b * c) / c = a / c + b. Proof. intros; nia. Qed.
Example Z_div_lt': forall a b : Z, b >= 2 -> a > 0 -> a / b < a. Proof. intros; nia. Qed.
Example Zdiv_mult_le: forall a b c : Z, 0 <= a -> 0 <= b -> 0 <= c -> c * (a / b) <= c * a / b. Proof. intros; nia. Qed.
Example Z_div_add_l: forall a b c : Z, b <> 0 -> (a * b + c) / b = a + c / b. Proof. intros; nia. Qed.
Example Z_div_plus_full_l: forall a b c : Z, b <> 0 -> (a * b + c) / b = a + c / b. Proof. intros; nia. Qed.
Example Z_div_add: forall a b c : Z, c <> 0 -> (a + b * c) / c = a / c + b. Proof. intros; nia. Qed.
Example Z_div_plus_full: forall a b c : Z, c <> 0 -> (a + b * c) / c = a / c + b. Proof. intros; nia. Qed.
Example Z_div_mul_le: forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a / b) <= c * a / b. Proof. intros; nia. Qed.
Example Z_div_mul_cancel_r: forall a b c : Z, b <> 0 -> c <> 0 -> a * c / (b * c) = a / b. Proof. intros; nia. Qed.
Example Z_div_div: forall a b c : Z, b <> 0 -> 0 < c -> a / b / c = a / (b * c). Proof. intros; nia. Qed.
Example Z_div_mul_cancel_l: forall a b c : Z, b <> 0 -> c <> 0 -> c * a / (c * b) = a / b. Proof. intros; nia. Qed.
Example Z_div_unique_neg: forall a b q r : Z, b < r <= 0 -> a = b * q + r -> q = a / b. Proof. intros; nia. Qed.
Example Zdiv_unique: forall a b q r : Z, 0 <= r < b -> a = b * q + r -> q = a / b. Proof. intros; nia. Qed.
Example Z_div_unique_pos: forall a b q r : Z, 0 <= r < b -> a = b * q + r -> q = a / b. Proof. intros; nia. Qed.
Example Z_div_small_iff: forall a b : Z, b <> 0 -> a / b = 0 <-> 0 <= a < b \/ b < a <= 0. Proof. intros; nia. Qed.
Example Z_div_unique: forall a b q r : Z, 0 <= r < b \/ b < r <= 0 -> a = b * q + r -> q = a / b. Proof. intros; nia. Qed.
Example Z_divide_mod : forall a b : Z, (b | a) -> a mod b = 0. Proof. intros. nia. Qed.
Example Z_mod_divide: forall a b : Z, b <> 0 -> a mod b = 0 <-> (b | a). Proof. split; intros. Fail all: nia. Abort.
Example Zmod_divides: forall a b : Z, b <> 0 -> a mod b = 0 <-> (exists c : Z, a = b * c). Proof. split; intros. Fail all: nia. Abort.
(** Now we do the same, but with [Z.quot] and [Z.rem] instead. *)
Example N2Z_inj_quot : forall n m : N, Z.of_N (n / m) = Z.of_N n ÷ Z.of_N m. Proof. intros; nia. Qed.
Example N2Z_inj_rem : forall n m : N, Z.of_N (n mod m) = Z.rem (Z.of_N n) (Z.of_N m). Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_mul_quot_ge : forall a b : Z, a <= 0 -> b <> 0 -> a <= b * (a ÷ b) <= 0. Proof. t_zero. Qed.
Example OrdersEx_Z_as_DT_mul_quot_le : forall a b : Z, 0 <= a -> b <> 0 -> 0 <= b * (a ÷ b) <= a. Proof. t_zero. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_0_l : forall a : Z, 0 < a -> 0 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_1_l : forall a : Z, 1 < a -> 1 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_1_r : forall a : Z, 0 <= a -> a ÷ 1 = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_add : forall a b c : Z, 0 <= a -> 0 <= a + b * c -> 0 < c -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_add_l : forall a b c : Z, 0 <= c -> 0 <= a * b + c -> 0 < b -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_div : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a ÷ b ÷ c = a ÷ (b * c).
Proof. intros; assert (0 < b * c) by nia; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_le_compat_l : forall p q r : Z, 0 <= p -> 0 < q <= r -> p ÷ r <= p ÷ q. Proof. intros; saturate_quot_div_0; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_le_lower_bound : forall a b q : Z, 0 <= a -> 0 < b -> b * q <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_le_mono : forall a b c : Z, 0 < c -> 0 <= a <= b -> a ÷ c <= b ÷ c. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_le_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a <= b * q -> a ÷ b <= q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_lt : forall a b : Z, 0 < a -> 1 < b -> a ÷ b < a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < b * q -> a ÷ b < q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_mul_cancel_l : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> c * a ÷ (c * b) = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_mul_cancel_r : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a * c ÷ (b * c) = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_mul : forall a b : Z, 0 <= a -> 0 < b -> a * b ÷ b = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_mul_le : forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_same : forall a : Z, 0 < a -> a ÷ a = 1. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_small : forall a b : Z, 0 <= a < b -> a ÷ b = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_small_iff : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = 0 <-> a < b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_str_pos : forall a b : Z, 0 < b <= a -> 0 < a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_str_pos_iff : forall a b : Z, 0 <= a -> 0 < b -> 0 < a ÷ b <-> b <= a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_unique_exact : forall a b q : Z, 0 <= a -> 0 < b -> a = b * q -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_div_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_Private_Div_NZQuot_mul_div_le : forall a b : Z, 0 <= a -> 0 < b -> b * (a ÷ b) <= a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_0_l : forall a : Z, a <> 0 -> 0 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_1_l : forall a : Z, 1 < a -> 1 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_1_r : forall a : Z, a ÷ 1 = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_add : forall a b c : Z, c <> 0 -> 0 <= (a + b * c) * a -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_add_l : forall a b c : Z, b <> 0 -> 0 <= (a * b + c) * c -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_div_nonneg : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = a / b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_le_compat_l : forall p q r : Z, 0 <= p -> 0 < q <= r -> p ÷ r <= p ÷ q.
Proof.
intros; destruct (Z_zerop p); t_zero.
Qed.
Example OrdersEx_Z_as_DT_quot_le_lower_bound : forall a b q : Z, 0 < b -> b * q <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_le_mono : forall a b c : Z, 0 < c -> a <= b -> a ÷ c <= b ÷ c. Proof. t_zero. Qed.
Example OrdersEx_Z_as_DT_quot_le_upper_bound : forall a b q : Z, 0 < b -> a <= b * q -> a ÷ b <= q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_lt : forall a b : Z, 0 < a -> 1 < b -> a ÷ b < a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < b * q -> a ÷ b < q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_mul_cancel_l : forall a b c : Z, b <> 0 -> c <> 0 -> c * a ÷ (c * b) = a ÷ b. Proof. intros; saturate_mod_div_0; repeat destr_step; nia. Qed.
Example OrdersEx_Z_as_DT_quot_mul_cancel_r : forall a b c : Z, b <> 0 -> c <> 0 -> a * c ÷ (b * c) = a ÷ b. Proof. intros; saturate_mod_div_0; repeat destr_step; nia. Qed.
Example OrdersEx_Z_as_DT_quot_mul : forall a b : Z, b <> 0 -> a * b ÷ b = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_mul_le : forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_opp_l : forall a b : Z, b <> 0 -> - a ÷ b = - (a ÷ b). Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_opp_opp : forall a b : Z, b <> 0 -> - a ÷ - b = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_opp_r : forall a b : Z, b <> 0 -> a ÷ - b = - (a ÷ b). Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_quot : forall a b c : Z, b <> 0 -> c <> 0 -> a ÷ b ÷ c = a ÷ (b * c).
Proof.
intros; assert (b * c <> 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
assert (Hc : 0 < c \/ c < 0) by nia.
destruct Hb, Hc.
all: first [ assert (0 < b * c) by nia | assert (b * c < 0) by nia ].
all: nia.
Qed.
Example OrdersEx_Z_as_DT_quot_same : forall a : Z, a <> 0 -> a ÷ a = 1. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_small : forall a b : Z, 0 <= a < b -> a ÷ b = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_str_pos : forall a b : Z, 0 < b <= a -> 0 < a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_unique_exact : forall a b q : Z, b <> 0 -> a = b * q -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_DT_quot_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_mul_quot_ge : forall a b : Z, a <= 0 -> b <> 0 -> a <= b * (a ÷ b) <= 0.
Proof.
intros.
assert (0 < a ÷ b \/ a ÷ b = 0 \/ a ÷ b < 0) by nia.
nia.
Qed.
Example OrdersEx_Z_as_OT_mul_quot_le : forall a b : Z, 0 <= a -> b <> 0 -> 0 <= b * (a ÷ b) <= a.
Proof.
intros.
assert (0 < a ÷ b \/ a ÷ b = 0 \/ a ÷ b < 0) by nia.
nia.
Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_0_l : forall a : Z, 0 < a -> 0 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_1_l : forall a : Z, 1 < a -> 1 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_1_r : forall a : Z, 0 <= a -> a ÷ 1 = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_add : forall a b c : Z, 0 <= a -> 0 <= a + b * c -> 0 < c -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_add_l : forall a b c : Z, 0 <= c -> 0 <= a * b + c -> 0 < b -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_div : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a ÷ b ÷ c = a ÷ (b * c). Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_le_compat_l : forall p q r : Z, 0 <= p -> 0 < q <= r -> p ÷ r <= p ÷ q.
Proof.
intros.
destruct (Z_zerop p); t_zero.
Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_le_lower_bound : forall a b q : Z, 0 <= a -> 0 < b -> b * q <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_le_mono : forall a b c : Z, 0 < c -> 0 <= a <= b -> a ÷ c <= b ÷ c. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_le_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a <= b * q -> a ÷ b <= q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_lt : forall a b : Z, 0 < a -> 1 < b -> a ÷ b < a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < b * q -> a ÷ b < q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_mul_cancel_l : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> c * a ÷ (c * b) = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_mul_cancel_r : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a * c ÷ (b * c) = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_mul : forall a b : Z, 0 <= a -> 0 < b -> a * b ÷ b = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_mul_le : forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_same : forall a : Z, 0 < a -> a ÷ a = 1. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_small : forall a b : Z, 0 <= a < b -> a ÷ b = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_small_iff : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = 0 <-> a < b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_str_pos : forall a b : Z, 0 < b <= a -> 0 < a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_str_pos_iff : forall a b : Z, 0 <= a -> 0 < b -> 0 < a ÷ b <-> b <= a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_unique_exact : forall a b q : Z, 0 <= a -> 0 < b -> a = b * q -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_div_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_Private_Div_NZQuot_mul_div_le : forall a b : Z, 0 <= a -> 0 < b -> b * (a ÷ b) <= a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_0_l : forall a : Z, a <> 0 -> 0 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_1_l : forall a : Z, 1 < a -> 1 ÷ a = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_1_r : forall a : Z, a ÷ 1 = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_add : forall a b c : Z, c <> 0 -> 0 <= (a + b * c) * a -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_add_l : forall a b c : Z, b <> 0 -> 0 <= (a * b + c) * c -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_div_nonneg : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = a / b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_le_compat_l : forall p q r : Z, 0 <= p -> 0 < q <= r -> p ÷ r <= p ÷ q. Proof. t_zero. Qed.
Example OrdersEx_Z_as_OT_quot_le_lower_bound : forall a b q : Z, 0 < b -> b * q <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_le_mono : forall a b c : Z, 0 < c -> a <= b -> a ÷ c <= b ÷ c. Proof. t_zero. Qed.
Example OrdersEx_Z_as_OT_quot_le_upper_bound : forall a b q : Z, 0 < b -> a <= b * q -> a ÷ b <= q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_lt : forall a b : Z, 0 < a -> 1 < b -> a ÷ b < a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < b * q -> a ÷ b < q. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_mul_cancel_l : forall a b c : Z, b <> 0 -> c <> 0 -> c * a ÷ (c * b) = a ÷ b.
Proof.
intros.
assert (0 < b \/ b < 0) by nia.
assert (0 < c \/ c < 0) by nia.
assert (0 < a \/ a = 0 \/ a < 0) by nia.
repeat destr_step.
all: first [ assert (0 < c * a) by nia | assert (c * a < 0) by nia | assert (c * a = 0) by nia ].
all: first [ assert (0 < c * b) by nia | assert (c * b < 0) by nia ].
all: nia.
Qed.
Example OrdersEx_Z_as_OT_quot_mul_cancel_r : forall a b c : Z, b <> 0 -> c <> 0 -> a * c ÷ (b * c) = a ÷ b.
Proof.
intros.
assert (0 < b \/ b < 0) by nia.
assert (0 < c \/ c < 0) by nia.
assert (0 < a \/ a = 0 \/ a < 0) by nia.
repeat destr_step.
all: first [ assert (0 < c * a) by nia | assert (c * a < 0) by nia | assert (c * a = 0) by nia ].
all: first [ assert (0 < c * b) by nia | assert (c * b < 0) by nia ].
all: nia.
Qed.
Example OrdersEx_Z_as_OT_quot_mul : forall a b : Z, b <> 0 -> a * b ÷ b = a. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_mul_le : forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_opp_l : forall a b : Z, b <> 0 -> - a ÷ b = - (a ÷ b). Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_opp_opp : forall a b : Z, b <> 0 -> - a ÷ - b = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_opp_r : forall a b : Z, b <> 0 -> a ÷ - b = - (a ÷ b). Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_quot : forall a b c : Z, b <> 0 -> c <> 0 -> a ÷ b ÷ c = a ÷ (b * c).
Proof.
intros.
assert (0 < b \/ b < 0) by nia.
assert (0 < c \/ c < 0) by nia.
repeat destr_step.
all: first [ assert (0 < b * c) by nia | assert (b * c < 0) by nia ].
all: nia.
Qed.
Example OrdersEx_Z_as_OT_quot_same : forall a : Z, a <> 0 -> a ÷ a = 1. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_small : forall a b : Z, 0 <= a < b -> a ÷ b = 0. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_str_pos : forall a b : Z, 0 < b <= a -> 0 < a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_unique_exact : forall a b q : Z, b <> 0 -> a = b * q -> q = a ÷ b. Proof. intros; nia. Qed.
Example OrdersEx_Z_as_OT_quot_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> q = a ÷ b. Proof. intros; nia. Qed.
Example Z2N_inj_quot : forall n m : Z, 0 <= n -> 0 <= m -> Z.to_N (n ÷ m) = (Z.to_N n / Z.to_N m)%N. Proof. t_zero. Qed.
Example Z2N_inj_rem : forall n m : Z, 0 <= n -> 0 <= m -> Z.to_N (Z.rem n m) = (Z.to_N n mod Z.to_N m)%N. Proof. intros. Abort.
Example Zabs2N_inj_rem : forall n m : Z, Z.abs_N (Z.rem n m) = (Z.abs_N n mod Z.abs_N m)%N. Proof. intros. Abort.
Example Z_add_rem : forall a b n : Z, n <> 0 -> 0 <= a * b -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n. Proof. intros. Fail nia. Abort.
Example Z_add_rem_idemp_l : forall a b n : Z, n <> 0 -> 0 <= a * b -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n. Proof. intros. Fail nia. Abort.
Example Z_add_rem_idemp_r : forall a b n : Z, n <> 0 -> 0 <= a * b -> Z.rem (a + Z.rem b n) n = Z.rem (a + b) n. Proof. intros. Fail nia. Abort.
Example Z_gcd_quot_gcd : forall a b g : Z, g <> 0 -> g = Z.gcd a b -> Z.gcd (a ÷ g) (b ÷ g) = 1. Proof. intros. Fail nia. Abort.
Example Z_gcd_rem : forall a b : Z, b <> 0 -> Z.gcd (Z.rem a b) b = Z.gcd b a. Proof. intros. Fail nia. Abort.
Example Z_mod_mul_r : forall a b c : Z, b <> 0 -> c <> 0 -> Z.rem a (b * c) = Z.rem a b + b * Z.rem (a ÷ b) c. Proof. intros. Fail nia. Abort.
Example Z_mul_pred_quot_gt : forall a b : Z, 0 <= a -> b < 0 -> a < b * Z.pred (a ÷ b). Proof. intros; nia. Qed.
Example Z_mul_pred_quot_lt : forall a b : Z, a <= 0 -> 0 < b -> b * Z.pred (a ÷ b) < a. Proof. intros; nia. Qed.
Example Z_mul_quot_ge : forall a b : Z, a <= 0 -> b <> 0 -> a <= b * (a ÷ b) <= 0. Proof. intros. Fail nia. Abort.
Example Z_mul_quot_le : forall a b : Z, 0 <= a -> b <> 0 -> 0 <= b * (a ÷ b) <= a. Proof. intros. Fail nia. Abort.
Example Z_mul_rem_distr_l : forall a b c : Z, b <> 0 -> c <> 0 -> Z.rem (c * a) (c * b) = c * Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_mul_rem_distr_r : forall a b c : Z, b <> 0 -> c <> 0 -> Z.rem (a * c) (b * c) = Z.rem a b * c. Proof. intros. Fail nia. Abort.
Example Z_mul_rem : forall a b n : Z, n <> 0 -> Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n. Proof. intros. Fail nia. Abort.
Example Z_mul_rem_idemp_l : forall a b n : Z, n <> 0 -> Z.rem (Z.rem a n * b) n = Z.rem (a * b) n. Proof. intros. Fail nia. Abort.
Example Z_mul_rem_idemp_r : forall a b n : Z, n <> 0 -> Z.rem (a * Z.rem b n) n = Z.rem (a * b) n. Proof. intros. Fail nia. Abort.
Example Z_mul_succ_quot_gt : forall a b : Z, 0 <= a -> 0 < b -> a < b * Z.succ (a ÷ b). Proof. intros; nia. Qed.
Example Z_mul_succ_quot_lt : forall a b : Z, a <= 0 -> b < 0 -> b * Z.succ (a ÷ b) < a. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_add_mod : forall a b n : Z, 0 <= a -> 0 <= b -> 0 < n -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_add_mod_idemp_l : forall a b n : Z, 0 <= a -> 0 <= b -> 0 < n -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_add_mod_idemp_r : forall a b n : Z, 0 <= a -> 0 <= b -> 0 < n -> Z.rem (a + Z.rem b n) n = Z.rem (a + b) n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_div_0_l : forall a : Z, 0 < a -> 0 ÷ a = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_1_l : forall a : Z, 1 < a -> 1 ÷ a = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_1_r : forall a : Z, 0 <= a -> a ÷ 1 = a. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_add : forall a b c : Z, 0 <= a -> 0 <= a + b * c -> 0 < c -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_add_l : forall a b c : Z, 0 <= c -> 0 <= a * b + c -> 0 < b -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_div : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a ÷ b ÷ c = a ÷ (b * c). Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_exact : forall a b : Z, 0 <= a -> 0 < b -> a = b * (a ÷ b) <-> Z.rem a b = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_le_compat_l : forall p q r : Z, 0 <= p -> 0 < q <= r -> p ÷ r <= p ÷ q. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_div_le_lower_bound : forall a b q : Z, 0 <= a -> 0 < b -> b * q <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_le_mono : forall a b c : Z, 0 < c -> 0 <= a <= b -> a ÷ c <= b ÷ c. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_le_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a <= b * q -> a ÷ b <= q. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_lt : forall a b : Z, 0 < a -> 1 < b -> a ÷ b < a. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < b * q -> a ÷ b < q. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_mul_cancel_l : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> c * a ÷ (c * b) = a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_mul_cancel_r : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a * c ÷ (b * c) = a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_mul : forall a b : Z, 0 <= a -> 0 < b -> a * b ÷ b = a. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_mul_le : forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_same : forall a : Z, 0 < a -> a ÷ a = 1. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_small : forall a b : Z, 0 <= a < b -> a ÷ b = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_small_iff : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = 0 <-> a < b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_str_pos : forall a b : Z, 0 < b <= a -> 0 < a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_str_pos_iff : forall a b : Z, 0 <= a -> 0 < b -> 0 < a ÷ b <-> b <= a. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_unique_exact : forall a b q : Z, 0 <= a -> 0 < b -> a = b * q -> q = a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_div_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> q = a ÷ b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_mod_0_l : forall a : Z, 0 < a -> Z.rem 0 a = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_mod_1_l : forall a : Z, 1 < a -> Z.rem 1 a = 1. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_1_r : forall a : Z, 0 <= a -> Z.rem a 1 = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_mod_add : forall a b c : Z, 0 <= a -> 0 <= a + b * c -> 0 < c -> Z.rem (a + b * c) c = Z.rem a c. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_divides : forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b = 0 <-> (exists c : Z, a = b * c). Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_le : forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b <= a. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_mod : forall a n : Z, 0 <= a -> 0 < n -> Z.rem (Z.rem a n) n = Z.rem a n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_mul : forall a b : Z, 0 <= a -> 0 < b -> Z.rem (a * b) b = 0. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_mod_mul_r : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> Z.rem a (b * c) = Z.rem a b + b * Z.rem (a ÷ b) c. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_same : forall a : Z, 0 < a -> Z.rem a a = 0. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_small : forall a b : Z, 0 <= a < b -> Z.rem a b = a. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_small_iff : forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b = a <-> a < b. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mod_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> r = Z.rem a b. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_mul_div_le : forall a b : Z, 0 <= a -> 0 < b -> b * (a ÷ b) <= a. Proof. intros; nia. Qed.
Example Z_Private_Div_NZQuot_mul_mod_distr_l : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> Z.rem (c * a) (c * b) = c * Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mul_mod_distr_r : forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> Z.rem (a * c) (b * c) = Z.rem a b * c. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mul_mod : forall a b n : Z, 0 <= a -> 0 <= b -> 0 < n -> Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mul_mod_idemp_l : forall a b n : Z, 0 <= a -> 0 <= b -> 0 < n -> Z.rem (Z.rem a n * b) n = Z.rem (a * b) n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mul_mod_idemp_r : forall a b n : Z, 0 <= a -> 0 <= b -> 0 < n -> Z.rem (a * Z.rem b n) n = Z.rem (a * b) n. Proof. intros. Fail nia. Abort.
Example Z_Private_Div_NZQuot_mul_succ_div_gt : forall a b : Z, 0 <= a -> 0 < b -> a < b * Z.succ (a ÷ b). Proof. intros; nia. Qed.
Example Z_Private_Div_Quot2Div_div_mod : forall a b : Z, b <> 0 -> a = b * (a ÷ b) + Z.rem a b. Proof. intros; nia. Qed.
Example Z_Private_Div_Quot2Div_div_wd : Morphisms.Proper (Morphisms.respectful eq (Morphisms.respectful eq eq)) Z.quot. Proof. repeat intro; subst; nia. Qed.
Example Z_Private_Div_Quot2Div_mod_bound_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= Z.rem a b < b. Proof. intros; nia. Qed.
Example Z_Private_Div_Quot2Div_mod_wd : Morphisms.Proper (Morphisms.respectful eq (Morphisms.respectful eq eq)) Z.rem. Proof. repeat intro; subst; nia. Qed.
Example Z_quot_0_l : forall a : Z, a <> 0 -> 0 ÷ a = 0. Proof. intros; nia. Qed.
Example Z_quot_0_r_ext : forall x y : Z, y = 0 -> x ÷ y = 0. Proof. intros; nia. Qed.
Example Z_quot_1_l : forall a : Z, 1 < a -> 1 ÷ a = 0. Proof. intros; nia. Qed.
Example Z_quot_1_r : forall a : Z, a ÷ 1 = a. Proof. intros; nia. Qed.
Example Zquot2_quot : forall n : Z, Z.quot2 n = n ÷ 2. Proof. intros; nia. Qed.
Example Z_quot_abs : forall a b : Z, b <> 0 -> Z.abs a ÷ Z.abs b = Z.abs (a ÷ b). Proof. intros. Fail nia. Abort.
Example Z_quot_abs_l : forall a b : Z, b <> 0 -> Z.abs a ÷ b = Z.sgn a * (a ÷ b). Proof. intros; nia. Qed.
Example Z_quot_abs_r : forall a b : Z, b <> 0 -> a ÷ Z.abs b = Z.sgn b * (a ÷ b). Proof. intros; nia. Qed.
Example Z_quot_add : forall a b c : Z, c <> 0 -> 0 <= (a + b * c) * a -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example Z_quot_add_l : forall a b c : Z, b <> 0 -> 0 <= (a * b + c) * c -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example Z_quot_div : forall a b : Z, b <> 0 -> a ÷ b = Z.sgn a * Z.sgn b * (Z.abs a / Z.abs b). Proof. intros; nia. Qed.
Example Z_quot_div_nonneg : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = a / b. Proof. intros; nia. Qed.
Example Z_quot_exact : forall a b : Z, b <> 0 -> a = b * (a ÷ b) <-> Z.rem a b = 0. Proof. intros; nia. Qed.
Example Z_quot_le_compat_l : forall p q r : Z, 0 <= p -> 0 < q <= r -> p ÷ r <= p ÷ q. Proof. intros. Fail nia. Abort.
Example Z_quot_le_lower_bound : forall a b q : Z, 0 < b -> b * q <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_le_mono : forall a b c : Z, 0 < c -> a <= b -> a ÷ c <= b ÷ c. Proof. intros. Fail nia. Abort.
Example Z_quot_le_upper_bound : forall a b q : Z, 0 < b -> a <= b * q -> a ÷ b <= q. Proof. intros; nia. Qed.
Example Z_quot_lt : forall a b : Z, 0 < a -> 1 < b -> a ÷ b < a. Proof. intros; nia. Qed.
Example Z_quot_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < b * q -> a ÷ b < q. Proof. intros; nia. Qed.
Example Z_quot_mul_cancel_l : forall a b c : Z, b <> 0 -> c <> 0 -> c * a ÷ (c * b) = a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_mul_cancel_r : forall a b c : Z, b <> 0 -> c <> 0 -> a * c ÷ (b * c) = a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_mul : forall a b : Z, b <> 0 -> a * b ÷ b = a. Proof. intros; nia. Qed.
Example Z_quot_mul_le : forall a b c : Z, 0 <= a -> 0 < b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_opp_l : forall a b : Z, b <> 0 -> - a ÷ b = - (a ÷ b). Proof. intros; nia. Qed.
Example Z_quot_opp_opp : forall a b : Z, b <> 0 -> - a ÷ - b = a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_opp_r : forall a b : Z, b <> 0 -> a ÷ - b = - (a ÷ b). Proof. intros; nia. Qed.
Example Z_quot_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_quot : forall a b c : Z, b <> 0 -> c <> 0 -> a ÷ b ÷ c = a ÷ (b * c).
Proof.
intros.
assert (0 < b \/ b < 0) by nia.
assert (0 < c \/ c < 0) by nia.
repeat destr_step.
all: first [ assert (0 < b * c) by nia | assert (b * c < 0) by nia ].
all: nia.
Qed.
Example Z_quot_rem' : forall a b : Z, a = b * (a ÷ b) + Z.rem a b. Proof. intros; nia. Qed.
Example Z_quot_rem : forall a b : Z, b <> 0 -> a = b * (a ÷ b) + Z.rem a b. Proof. intros; nia. Qed.
Example Z_quot_same : forall a : Z, a <> 0 -> a ÷ a = 1. Proof. intros; nia. Qed.
Example Z_quot_small : forall a b : Z, 0 <= a < b -> a ÷ b = 0. Proof. intros; nia. Qed.
Example Z_quot_small_iff : forall a b : Z, b <> 0 -> a ÷ b = 0 <-> Z.abs a < Z.abs b. Proof. intros; nia. Qed.
Example Z_quot_str_pos : forall a b : Z, 0 < b <= a -> 0 < a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_unique_exact : forall a b q : Z, b <> 0 -> a = b * q -> q = a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> q = a ÷ b. Proof. intros; nia. Qed.
Example Z_quot_wd : Morphisms.Proper (Morphisms.respectful Z.eq (Morphisms.respectful Z.eq Z.eq)) Z.quot. Proof. repeat intro. Fail nia. Abort.
Example Zquot_Zeven_rem : forall a : Z, Z.even a = (Z.rem a 2 =? 0). Proof. intros. Fail nia. Abort.
Example Zquot_Z_mult_quot_ge : forall a b : Z, a <= 0 -> a <= b * (a ÷ b) <= 0. Proof. intros. Fail nia. Abort.
Example Zquot_Z_mult_quot_le : forall a b : Z, 0 <= a -> 0 <= b * (a ÷ b) <= a. Proof. intros. Fail nia. Abort.
Example Zquot_Zmult_rem_distr_l : forall a b c : Z, Z.rem (c * a) (c * b) = c * Z.rem a b. Proof. intros. Fail nia. Abort.
Example Zquot_Zmult_rem_distr_r : forall a b c : Z, Z.rem (a * c) (b * c) = Z.rem a b * c. Proof. intros. Fail nia. Abort.
Example Zquot_Zmult_rem : forall a b n : Z, Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n.
Proof.
intros.
destruct (Z_zerop n); [ subst; nia | ].
destruct (Z_zerop a).
{ assert (a * b = 0) by nia.
assert (Z.rem a n * Z.rem b n = 0) by nia.
generalize dependent (Z.rem a n * Z.rem b n); intros.
generalize dependent (a * b); intros.
subst; nia. }
destruct (Z_zerop b).
{ assert (a * b = 0) by nia.
assert (Z.rem a n * Z.rem b n = 0) by nia.
generalize dependent (Z.rem a n * Z.rem b n); intros.
generalize dependent (a * b); intros.
subst; nia. }
assert (a * b <> 0) by nia.
assert (Hd : (a * b) ÷ n = (a ÷ n) * (b ÷ n) * n + (Z.rem a n) * (b ÷ n) + (Z.rem b n) * (a ÷ n) + (Z.rem a n * Z.rem b n) ÷ n).
{ assert (Hn : 0 < n \/ n < 0) by nia.
assert (Ha : 0 < a \/ a < 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
repeat destr_step.
all: first [ assert (a * b < 0) by nia | assert (0 < a * b) by nia ].
all: nia. }
assert (Hn : 0 < n \/ n < 0) by nia.
assert (Ha : 0 < a \/ a < 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
repeat destr_step.
all: first [ assert (a * b < 0) by (clear Hd; nia) | assert (0 < a * b) by (clear Hd; nia) ].
all: nia.
Qed.
Example Zquot_Zmult_rem_idemp_l : forall a b n : Z, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n.
Proof.
intros.
destruct (Z_zerop n); [ subst; nia | ].
destruct (Z_zerop a).
{ assert (a * b = 0) by nia.
assert (Z.rem a n = 0) by nia.
assert (Z.rem a n * b = 0) by nia.
generalize dependent (Z.rem a n * b); intros.
generalize dependent (a * b); intros.
subst; nia. }
destruct (Z_zerop b).
{ assert (a * b = 0) by nia.
assert (Z.rem a n * b = 0) by nia.
generalize dependent (Z.rem a n * b); intros.
generalize dependent (a * b); intros.
subst; nia. }
assert (a * b <> 0) by nia.
assert (Hd : (a * b) ÷ n = (a ÷ n) * b + ((Z.rem a n * b) ÷ n)).
{ assert (Hn : 0 < n \/ n < 0) by nia.
assert (Ha : 0 < a \/ a < 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
repeat destr_step.
all: first [ assert (a * b < 0) by nia | assert (0 < a * b) by nia ].
all: nia. }
assert (Hn : 0 < n \/ n < 0) by nia.
assert (Ha : 0 < a \/ a < 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
repeat destr_step.
all: first [ assert (a * b < 0) by (clear Hd; nia) | assert (0 < a * b) by (clear Hd; nia) ].
all: nia.
Qed.
Example Zquot_Zmult_rem_idemp_r : forall a b n : Z, Z.rem (b * Z.rem a n) n = Z.rem (b * a) n.
Proof.
intros.
destruct (Z_zerop n); [ subst; nia | ].
destruct (Z_zerop a).
{ assert (b * a = 0) by nia.
assert (Z.rem a n = 0) by nia.
assert (b * Z.rem a n = 0) by nia.
generalize dependent (b * Z.rem a n); intros.
generalize dependent (b * a); intros.
subst; nia. }
destruct (Z_zerop b).
{ assert (b * a = 0) by nia.
assert (b * Z.rem a n = 0) by nia.
generalize dependent (b * Z.rem a n); intros.
generalize dependent (b * a); intros.
subst; nia. }
assert (b * a <> 0) by nia.
assert (Hd : (b * a) ÷ n = (a ÷ n) * b + ((b * Z.rem a n) ÷ n)).
{ assert (Hn : 0 < n \/ n < 0) by nia.
assert (Ha : 0 < a \/ a < 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
repeat destr_step.
all: first [ assert (b * a < 0) by nia | assert (0 < b * a) by nia ].
all: nia. }
assert (Hn : 0 < n \/ n < 0) by nia.
assert (Ha : 0 < a \/ a < 0) by nia.
assert (Hb : 0 < b \/ b < 0) by nia.
repeat destr_step.
all: first [ assert (b * a < 0) by (clear Hd; nia) | assert (0 < b * a) by (clear Hd; nia) ].
all: nia.
Qed.
Example Zquot_Zodd_rem : forall a : Z, Z.odd a = negb (Z.rem a 2 =? 0). Proof. intros. Fail nia. Abort.
Example Zquot_Zplus_rem : forall a b n : Z, 0 <= a * b -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n. Proof. intros. Abort.
Example Zquot_Zplus_rem_idemp_l : forall a b n : Z, 0 <= a * b -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n. Proof. intros. Abort.
Example Zquot_Zplus_rem_idemp_r : forall a b n : Z, 0 <= a * b -> Z.rem (b + Z.rem a n) n = Z.rem (b + a) n. Proof. intros. Abort.
Example Zquot_Zquot_0_l : forall a : Z, 0 ÷ a = 0. Proof. intros; nia. Qed.
Example Zquot_Zquot_0_r : forall a : Z, a ÷ 0 = 0. Proof. intros; nia. Qed.
Example Zquot_Z_quot_exact_full : forall a b : Z, a = b * (a ÷ b) <-> Z.rem a b = 0. Proof. intros; nia. Qed.
Example Zquot_Zquot_le_lower_bound : forall a b q : Z, 0 < b -> q * b <= a -> q <= a ÷ b. Proof. intros; nia. Qed.
Example Zquot_Zquot_le_upper_bound : forall a b q : Z, 0 < b -> a <= q * b -> a ÷ b <= q. Proof. intros; nia. Qed.
Example Zquot_Z_quot_lt : forall a b : Z, 0 < a -> 2 <= b -> a ÷ b < a. Proof. intros; nia. Qed.
Example Zquot_Zquot_lt_upper_bound : forall a b q : Z, 0 <= a -> 0 < b -> a < q * b -> a ÷ b < q. Proof. intros; nia. Qed.
From Coq Require Zquot.
Example Zquot_Zquot_mod_unique_full : forall a b q r : Z, Zquot.Remainder a b r -> a = b * q + r -> q = a ÷ b /\ r = Z.rem a b. Proof. intros. Fail nia. Abort.
Example Zquot_Z_quot_monotone : forall a b c : Z, 0 <= c -> a <= b -> a ÷ c <= b ÷ c. Proof. intros. Fail nia. Abort.
Example Zquot_Zquot_mult_cancel_l : forall a b c : Z, c <> 0 -> c * a ÷ (c * b) = a ÷ b. Proof. intros. Abort.
Example Zquot_Zquot_mult_cancel_r : forall a b c : Z, c <> 0 -> a * c ÷ (b * c) = a ÷ b. Proof. intros. Abort.
Example Zquot_Zquot_mult_le : forall a b c : Z, 0 <= a -> 0 <= b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b. Proof. intros; nia. Qed.
Example Zquot_Zquot_opp_l : forall a b : Z, - a ÷ b = - (a ÷ b). Proof. intros; nia. Qed.
Example Zquot_Zquot_opp_opp : forall a b : Z, - a ÷ - b = a ÷ b. Proof. intros; nia. Qed.
Example Zquot_Zquot_opp_r : forall a b : Z, a ÷ - b = - (a ÷ b). Proof. intros; nia. Qed.
Example Zquot_Z_quot_plus : forall a b c : Z, 0 <= (a + b * c) * a -> c <> 0 -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros; nia. Qed.
Example Zquot_Z_quot_plus_l : forall a b c : Z, 0 <= (a * b + c) * c -> b <> 0 -> b <> 0 -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros; nia. Qed.
Example Zquot_Z_quot_pos : forall a b : Z, 0 <= a -> 0 <= b -> 0 <= a ÷ b. Proof. intros; nia. Qed.
Example Zquot_Zquotrem_Zdiv_eucl_pos : forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = a / b /\ Z.rem a b = a mod b. Proof. intros; nia. Qed.
Example Zquot_Zquot_sgn : forall a b : Z, 0 <= Z.sgn (a ÷ b) * Z.sgn a * Z.sgn b. Proof. intros; nia. Qed.
Example Zquot_Zquot_unique_full : forall a b q r : Z, Zquot.Remainder a b r -> a = b * q + r -> q = a ÷ b. Proof. intros. Fail nia. Abort.
Example Zquot_Zquot_Zdiv_pos : forall a b : Z, 0 <= a -> 0 <= b -> a ÷ b = a / b. Proof. intros; nia. Qed.
Example Zquot_Zquot_Zquot : forall a b c : Z, a ÷ b ÷ c = a ÷ (b * c). Proof. intros. Abort.
Example Zquot_Zrem_0_l : forall a : Z, Z.rem 0 a = 0. Proof. intros; nia. Qed.
Example Zquot_Zrem_0_r : forall a : Z, Z.rem a 0 = a. Proof. intros; nia. Qed.
Example Zquot_Zrem_divides : forall a b : Z, Z.rem a b = 0 <-> (exists c : Z, a = b * c). Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_even : forall a : Z, Z.rem a 2 = (if Z.even a then 0 else Z.sgn a). Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_le : forall a b : Z, 0 <= a -> 0 <= b -> Z.rem a b <= a. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_lt_neg : forall a b : Z, a <= 0 -> b <> 0 -> - Z.abs b < Z.rem a b <= 0. Proof. intros; nia. Qed.
Example Zquot_Zrem_lt_neg_neg : forall a b : Z, a <= 0 -> b < 0 -> b < Z.rem a b <= 0. Proof. intros; nia. Qed.
Example Zquot_Zrem_lt_neg_pos : forall a b : Z, a <= 0 -> 0 < b -> - b < Z.rem a b <= 0. Proof. intros; nia. Qed.
Example Zquot_Zrem_lt_pos : forall a b : Z, 0 <= a -> b <> 0 -> 0 <= Z.rem a b < Z.abs b. Proof. intros; nia. Qed.
Example Zquot_Zrem_lt_pos_neg : forall a b : Z, 0 <= a -> b < 0 -> 0 <= Z.rem a b < - b. Proof. intros; nia. Qed.
Example Zquot_Zrem_lt_pos_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= Z.rem a b < b. Proof. intros; nia. Qed.
Example Zquot_Z_rem_mult : forall a b : Z, Z.rem (a * b) b = 0. Proof. intros; nia. Qed.
Example Zquot_Zrem_odd : forall a : Z, Z.rem a 2 = (if Z.odd a then Z.sgn a else 0). Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_opp_l : forall a b : Z, Z.rem (- a) b = - Z.rem a b. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_opp_opp : forall a b : Z, Z.rem (- a) (- b) = - Z.rem a b. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_opp_r : forall a b : Z, Z.rem a (- b) = Z.rem a b. Proof. intros. Fail nia. Abort.
Example Zquot_Z_rem_plus : forall a b c : Z, 0 <= (a + b * c) * a -> Z.rem (a + b * c) c = Z.rem a c. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_rem : forall a n : Z, Z.rem (Z.rem a n) n = Z.rem a n. Proof. intros. Fail nia. Abort.
Example Zquot_Z_rem_same : forall a : Z, Z.rem a a = 0. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_sgn2 : forall a b : Z, 0 <= Z.rem a b * a. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_sgn : forall a b : Z, 0 <= Z.sgn (Z.rem a b) * Z.sgn a. Proof. intros; nia. Qed.
Example Zquot_Zrem_unique_full : forall a b q r : Z, Zquot.Remainder a b r -> a = b * q + r -> r = Z.rem a b. Proof. intros. Fail nia. Abort.
Example Zquot_Zrem_Zmod_pos : forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b = a mod b. Proof. intros; nia. Qed.
Example Zquot_Zrem_Zmod_zero : forall a b : Z, b <> 0 -> Z.rem a b = 0 <-> a mod b = 0. Proof. intros; nia. Qed.
Example Z_rem_0_l : forall a : Z, a <> 0 -> Z.rem 0 a = 0. Proof. intros; nia. Qed.
Example Z_rem_0_r_ext : forall x y : Z, y = 0 -> Z.rem x y = x. Proof. intros; nia. Qed.
Example Z_rem_1_l : forall a : Z, 1 < a -> Z.rem 1 a = 1. Proof. intros. Fail nia. Abort.
Example Z_rem_1_r : forall a : Z, Z.rem a 1 = 0. Proof. intros; nia. Qed.
Example Z_rem_abs : forall a b : Z, b <> 0 -> Z.rem (Z.abs a) (Z.abs b) = Z.abs (Z.rem a b). Proof. intros. Fail nia. Abort.
Example Z_rem_abs_l : forall a b : Z, b <> 0 -> Z.rem (Z.abs a) b = Z.abs (Z.rem a b). Proof. intros. Fail nia. Abort.
Example Z_rem_abs_r : forall a b : Z, b <> 0 -> Z.rem a (Z.abs b) = Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_rem_add : forall a b c : Z, c <> 0 -> 0 <= (a + b * c) * a -> Z.rem (a + b * c) c = Z.rem a c. Proof. intros. Fail nia. Abort.
Example Z_rem_bound_abs : forall a b : Z, b <> 0 -> Z.abs (Z.rem a b) < Z.abs b. Proof. intros; nia. Qed.
Example Z_rem_bound_neg_neg : forall x y : Z, y < 0 -> x <= 0 -> y < Z.rem x y <= 0. Proof. intros; nia. Qed.
Example Z_rem_bound_neg_pos : forall x y : Z, y < 0 -> 0 <= x -> 0 <= Z.rem x y < - y. Proof. intros; nia. Qed.
Example Z_rem_bound_pos : forall a b : Z, 0 <= a -> 0 < b -> 0 <= Z.rem a b < b. Proof. intros; nia. Qed.
Example Z_rem_bound_pos_neg : forall x y : Z, 0 < y -> x <= 0 -> - y < Z.rem x y <= 0. Proof. intros; nia. Qed.
Example Z_rem_bound_pos_pos : forall x y : Z, 0 < y -> 0 <= x -> 0 <= Z.rem x y < y. Proof. intros; nia. Qed.
Example Z_rem_eq : forall a b : Z, b <> 0 -> Z.rem a b = a - b * (a ÷ b). Proof. intros; nia. Qed.
Example Z_rem_le : forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b <= a. Proof. intros. Fail nia. Abort.
Example Z_rem_mod_eq_0 : forall a b : Z, b <> 0 -> Z.rem a b = 0 <-> a mod b = 0. Proof. intros; nia. Qed.
Example Z_rem_mod : forall a b : Z, b <> 0 -> Z.rem a b = Z.sgn a * (Z.abs a mod Z.abs b). Proof. intros. Fail nia. Abort.
Example Z_rem_mod_nonneg : forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b = a mod b. Proof. intros; nia. Qed.
Example Z_rem_mul : forall a b : Z, b <> 0 -> Z.rem (a * b) b = 0. Proof. intros; nia. Qed.
Example Z_rem_nonneg : forall a b : Z, b <> 0 -> 0 <= a -> 0 <= Z.rem a b. Proof. intros; nia. Qed.
Example Z_rem_nonpos : forall a b : Z, b <> 0 -> a <= 0 -> Z.rem a b <= 0. Proof. intros; nia. Qed.
Example Z_rem_opp_l : forall a b : Z, b <> 0 -> Z.rem (- a) b = - Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_rem_opp_l' : forall a b : Z, Z.rem (- a) b = - Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_rem_opp_opp : forall a b : Z, b <> 0 -> Z.rem (- a) (- b) = - Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_rem_opp_r : forall a b : Z, b <> 0 -> Z.rem a (- b) = Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_rem_opp_r' : forall a b : Z, Z.rem a (- b) = Z.rem a b. Proof. intros. Fail nia. Abort.
Example Z_rem_quot : forall a b : Z, b <> 0 -> Z.rem a b ÷ b = 0. Proof. intros; nia. Qed.
Example Z_rem_rem : forall a n : Z, n <> 0 -> Z.rem (Z.rem a n) n = Z.rem a n. Proof. intros. Fail nia. Abort.
Example Z_rem_same : forall a : Z, a <> 0 -> Z.rem a a = 0. Proof. intros. Fail nia. Abort.
Example Z_rem_sign : forall a b : Z, a <> 0 -> b <> 0 -> Z.sgn (Z.rem a b) <> - Z.sgn a. Proof. intros; nia. Qed.
Example Z_rem_sign_mul : forall a b : Z, b <> 0 -> 0 <= Z.rem a b * a. Proof. intros. Fail nia. Abort.
Example Z_rem_sign_nz : forall a b : Z, b <> 0 -> Z.rem a b <> 0 -> Z.sgn (Z.rem a b) = Z.sgn a. Proof. intros; nia. Qed.
Example Z_rem_small : forall a b : Z, 0 <= a < b -> Z.rem a b = a. Proof. intros. Fail nia. Abort.
Example Z_rem_small_iff : forall a b : Z, b <> 0 -> Z.rem a b = a <-> Z.abs a < Z.abs b. Proof. intros. Fail nia. Abort.
Example Z_rem_unique : forall a b q r : Z, 0 <= a -> 0 <= r < b -> a = b * q + r -> r = Z.rem a b. Proof. intros; nia. Qed.
Example Z_rem_divide: forall a b : Z, b <> 0 -> Z.rem a b = 0 <-> (b | a). Proof. split; intros. Fail all: nia. Abort.
Example Zrem_divides: forall a b : Z, b <> 0 -> Z.rem a b = 0 <-> (exists c : Z, a = b * c). Proof. split; intros. Fail all: nia. Abort.
Example Z_rem_wd : Morphisms.Proper (Morphisms.respectful Z.eq (Morphisms.respectful Z.eq Z.eq)) Z.rem. Proof. repeat intro; subst. Fail nia. Abort.