diff --git a/theories/ordinals/Epsilon0/Canon.v b/theories/ordinals/Epsilon0/Canon.v index f8cd1a01..122206da 100644 --- a/theories/ordinals/Epsilon0/Canon.v +++ b/theories/ordinals/Epsilon0/Canon.v @@ -1032,9 +1032,9 @@ Lemma CanonSSn (i:nat) : Canon (Cons alpha (S n) E0zero) (S i) = Cons alpha n (Canon (E0_phi0 alpha) (S i)). Proof. - intros; apply E0_eq_intro; - unfold Canon;repeat (rewrite cnf_rw || rewrite cnf_Cons); auto. - - rewrite canon_SSn_zero; auto with E0. + intros; apply E0_eq_intro. + unfold Canon; repeat (rewrite cnf_rw || rewrite cnf_Cons); auto. + - rewrite canon_SSn_zero; auto with E0. - unfold lt, E0_phi0; repeat rewrite cnf_rw. apply canonS_LT ; trivial. apply nf_phi0;auto with E0. diff --git a/theories/ordinals/Hydra/Omega2_Small.v b/theories/ordinals/Hydra/Omega2_Small.v index 95eac6c8..c06b32b4 100644 --- a/theories/ordinals/Hydra/Omega2_Small.v +++ b/theories/ordinals/Hydra/Omega2_Small.v @@ -19,7 +19,7 @@ Section Impossibility_Proof. (* begin snippet Impossibilitya *) - Variable m : Hydra -> ON_Omega2.t. + Variable m : Hydra -> rep Omega2. Context (Hvar: Hvariant Omega2 free m). diff --git a/theories/ordinals/OrdinalNotations/ON_Generic.v b/theories/ordinals/OrdinalNotations/ON_Generic.v index 47ef853a..fa260056 100644 --- a/theories/ordinals/OrdinalNotations/ON_Generic.v +++ b/theories/ordinals/OrdinalNotations/ON_Generic.v @@ -30,6 +30,10 @@ Class ON {A:Type} (lt: relation A) (cmp: Compare A) := #[global] Existing Instance ON_comp. Coercion ON_wf : ON >-> well_founded. +Definition rep {A:Type} {lt: relation A} {cmp: Compare A} + (on : ON lt cmp) := A. + +#[global] Coercion rep : ON >-> Sortclass. (* end snippet ONDef *) (* begin snippet ONDefsa:: no-out *) diff --git a/theories/ordinals/OrdinalNotations/ON_Omega2.v b/theories/ordinals/OrdinalNotations/ON_Omega2.v index f85a6b6a..35b7ce2c 100644 --- a/theories/ordinals/OrdinalNotations/ON_Omega2.v +++ b/theories/ordinals/OrdinalNotations/ON_Omega2.v @@ -498,7 +498,6 @@ Proof. - abstract lia. Qed. - Lemma ap_cases alpha : ap alpha -> alpha = 1 \/ alpha = omega. Proof. destruct (zero_limit_succ_dec alpha) as [[Hzero | Hlim] | Hsucc].