File tree Expand file tree Collapse file tree 6 files changed +10
-10
lines changed Expand file tree Collapse file tree 6 files changed +10
-10
lines changed Original file line number Diff line number Diff line change @@ -11,7 +11,7 @@ Unset Strict Implicit.
11
11
12
12
Section FA.
13
13
Variable char : finType.
14
- Local Notation word := (word char).
14
+ #[local] Notation word := (word char).
15
15
16
16
(** * Deterministic Finite Automata *)
17
17
157
157
Section CutOff.
158
158
Variables (aT rT : finType) (f : seq aT -> rT).
159
159
Hypothesis RC_f : forall x y a, f x = f y -> f (x++[::a]) = f (y++[::a]).
160
- Local Set Default Proof Using "RC_f".
160
+ #[local] Set Default Proof Using "RC_f".
161
161
162
162
Lemma RC_seq x y z : f x = f y -> f (x++z) = f (y++z).
163
163
Proof .
@@ -436,7 +436,7 @@ Section NonRegular.
436
436
Qed .
437
437
438
438
Hypothesis (a b : char) (Hab : a != b).
439
- Local Set Default Proof Using "Hab".
439
+ #[local] Set Default Proof Using "Hab".
440
440
441
441
Definition Lab w := exists n, w = nseq n a ++ nseq n b.
442
442
Original file line number Diff line number Diff line change @@ -49,7 +49,7 @@ Section HomDef.
49
49
50
50
Definition homomorphism := forall w1 w2, h (w1 ++ w2) = h w1 ++ h w2.
51
51
Hypothesis h_hom : homomorphism.
52
- Local Set Default Proof Using "h_hom".
52
+ #[local] Set Default Proof Using "h_hom".
53
53
54
54
Lemma h0 : h [::] = [::].
55
55
Proof .
Original file line number Diff line number Diff line change @@ -11,14 +11,14 @@ Set Implicit Arguments.
11
11
Unset Printing Implicit Defensive.
12
12
Unset Strict Implicit .
13
13
14
- Local Open Scope quotient_scope.
14
+ #[local] Open Scope quotient_scope.
15
15
16
16
(** * DFA Minimization *)
17
17
18
18
Section Minimization.
19
19
Variable (char : finType).
20
- Local Notation word := (word char).
21
- Local Notation dfa := (dfa char).
20
+ #[local] Notation word := (word char).
21
+ #[local] Notation dfa := (dfa char).
22
22
23
23
Definition coll (A : dfa) x y := forall w, (delta x w \in dfa_fin A) = (delta y w \in dfa_fin A).
24
24
Original file line number Diff line number Diff line change @@ -121,7 +121,7 @@ Proof. rewrite -!cardsT -powersetT. exact: card_powerset. Qed.
121
121
122
122
(** Miscellaneous *)
123
123
124
- Local Open Scope quotient_scope.
124
+ #[local] Open Scope quotient_scope.
125
125
Lemma epiK {T:choiceType} (e : equiv_rel T) x : e (repr (\pi_{eq_quot e} x)) x.
126
126
Proof . by rewrite -eqmodE reprK. Qed .
127
127
Original file line number Diff line number Diff line change @@ -20,7 +20,7 @@ exist most general classifiers corresponding to minimal automata. *)
20
20
Section Clasifiers.
21
21
22
22
Variable char: finType.
23
- Local Notation word := (word char).
23
+ #[local] Notation word := (word char).
24
24
25
25
Record classifier := Classifier {
26
26
classifier_classes : finType;
Original file line number Diff line number Diff line change @@ -11,7 +11,7 @@ Unset Strict Implicit.
11
11
12
12
Section NFA.
13
13
Variable char : finType.
14
- Local Notation word := (word char).
14
+ #[local] Notation word := (word char).
15
15
16
16
(** * Nondeterministic Finite Automata.
17
17
You can’t perform that action at this time.
0 commit comments