Skip to content

Commit 555c33f

Browse files
authored
consistently use #[local] instead of Local (#62)
1 parent 6d5f456 commit 555c33f

File tree

6 files changed

+10
-10
lines changed

6 files changed

+10
-10
lines changed

theories/dfa.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ Unset Strict Implicit.
1111

1212
Section FA.
1313
Variable char : finType.
14-
Local Notation word := (word char).
14+
#[local] Notation word := (word char).
1515

1616
(** * Deterministic Finite Automata *)
1717

@@ -157,7 +157,7 @@ Qed.
157157
Section CutOff.
158158
Variables (aT rT : finType) (f : seq aT -> rT).
159159
Hypothesis RC_f : forall x y a, f x = f y -> f (x++[::a]) = f (y++[::a]).
160-
Local Set Default Proof Using "RC_f".
160+
#[local] Set Default Proof Using "RC_f".
161161

162162
Lemma RC_seq x y z : f x = f y -> f (x++z) = f (y++z).
163163
Proof.
@@ -436,7 +436,7 @@ Section NonRegular.
436436
Qed.
437437

438438
Hypothesis (a b : char) (Hab : a != b).
439-
Local Set Default Proof Using "Hab".
439+
#[local] Set Default Proof Using "Hab".
440440

441441
Definition Lab w := exists n, w = nseq n a ++ nseq n b.
442442

theories/languages.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ Section HomDef.
4949

5050
Definition homomorphism := forall w1 w2, h (w1 ++ w2) = h w1 ++ h w2.
5151
Hypothesis h_hom : homomorphism.
52-
Local Set Default Proof Using "h_hom".
52+
#[local] Set Default Proof Using "h_hom".
5353

5454
Lemma h0 : h [::] = [::].
5555
Proof.

theories/minimization.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,14 @@ Set Implicit Arguments.
1111
Unset Printing Implicit Defensive.
1212
Unset Strict Implicit.
1313

14-
Local Open Scope quotient_scope.
14+
#[local] Open Scope quotient_scope.
1515

1616
(** * DFA Minimization *)
1717

1818
Section Minimization.
1919
Variable (char : finType).
20-
Local Notation word := (word char).
21-
Local Notation dfa := (dfa char).
20+
#[local] Notation word := (word char).
21+
#[local] Notation dfa := (dfa char).
2222

2323
Definition coll (A : dfa) x y := forall w, (delta x w \in dfa_fin A) = (delta y w \in dfa_fin A).
2424

theories/misc.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ Proof. rewrite -!cardsT -powersetT. exact: card_powerset. Qed.
121121

122122
(** Miscellaneous *)
123123

124-
Local Open Scope quotient_scope.
124+
#[local] Open Scope quotient_scope.
125125
Lemma epiK {T:choiceType} (e : equiv_rel T) x : e (repr (\pi_{eq_quot e} x)) x.
126126
Proof. by rewrite -eqmodE reprK. Qed.
127127

theories/myhill_nerode.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ exist most general classifiers corresponding to minimal automata. *)
2020
Section Clasifiers.
2121

2222
Variable char: finType.
23-
Local Notation word := (word char).
23+
#[local] Notation word := (word char).
2424

2525
Record classifier := Classifier {
2626
classifier_classes : finType;

theories/nfa.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ Unset Strict Implicit.
1111

1212
Section NFA.
1313
Variable char : finType.
14-
Local Notation word := (word char).
14+
#[local] Notation word := (word char).
1515

1616
(** * Nondeterministic Finite Automata.
1717

0 commit comments

Comments
 (0)