Skip to content

Commit 669ce80

Browse files
committed
Prove that Subnet is reflexive and transitive
1 parent f922959 commit 669ce80

File tree

1 file changed

+30
-0
lines changed

1 file changed

+30
-0
lines changed

theories/Topology/Nets.v

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,36 @@ Definition Subnet {I : DirectedSet} {X : Type}
1818
(forall j : DS_set J,
1919
y j = x (h j)).
2020

21+
Lemma Subnet_refl {I : DirectedSet} {X : Type} (x : Net I X) :
22+
Subnet x x.
23+
Proof.
24+
exists id. split; [|split].
25+
- tauto.
26+
- intros i. exists i. split.
27+
+ apply I.
28+
+ exists i; reflexivity.
29+
- reflexivity.
30+
Qed.
31+
32+
Lemma Subnet_trans {I J K : DirectedSet} {X : Type}
33+
(x : Net I X) (y : Net J X) (z : Net K X) :
34+
Subnet x y -> Subnet y z -> Subnet x z.
35+
Proof.
36+
intros [f [Hf1 [Hf2 Hf3]]]
37+
[g [Hg1 [Hg2 Hg3]]].
38+
exists (compose f g). split; [|split].
39+
- intros j1 j2 Hjj. apply Hf1, Hg1, Hjj.
40+
- intros i.
41+
specialize (Hf2 i) as [j0 [Hij [j Hj]]].
42+
subst j0.
43+
specialize (Hg2 j) as [k0 [Hjk [k Hk]]].
44+
subst k0.
45+
exists (f (g k)). split.
46+
+ apply preord_trans with (f j); auto. apply I.
47+
+ exists k. reflexivity.
48+
- intros k. rewrite Hg3, Hf3. reflexivity.
49+
Qed.
50+
2151
Section Net.
2252
Variable I:DirectedSet.
2353
Variable X:TopologicalSpace.

0 commit comments

Comments
 (0)