File tree Expand file tree Collapse file tree 1 file changed +30
-0
lines changed Expand file tree Collapse file tree 1 file changed +30
-0
lines changed Original file line number Diff line number Diff line change @@ -18,6 +18,36 @@ Definition Subnet {I : DirectedSet} {X : Type}
18
18
(forall j : DS_set J,
19
19
y j = x (h j)).
20
20
21
+ Lemma Subnet_refl {I : DirectedSet} {X : Type } (x : Net I X) :
22
+ Subnet x x.
23
+ Proof .
24
+ exists id. split; [|split].
25
+ - tauto.
26
+ - intros i. exists i. split.
27
+ + apply I.
28
+ + exists i; reflexivity.
29
+ - reflexivity.
30
+ Qed .
31
+
32
+ Lemma Subnet_trans {I J K : DirectedSet} {X : Type }
33
+ (x : Net I X) (y : Net J X) (z : Net K X) :
34
+ Subnet x y -> Subnet y z -> Subnet x z.
35
+ Proof .
36
+ intros [f [Hf1 [Hf2 Hf3]]]
37
+ [g [Hg1 [Hg2 Hg3]]].
38
+ exists (compose f g). split; [|split].
39
+ - intros j1 j2 Hjj. apply Hf1, Hg1, Hjj.
40
+ - intros i.
41
+ specialize (Hf2 i) as [j0 [Hij [j Hj]]].
42
+ subst j0.
43
+ specialize (Hg2 j) as [k0 [Hjk [k Hk]]].
44
+ subst k0.
45
+ exists (f (g k)). split.
46
+ + apply preord_trans with (f j); auto. apply I.
47
+ + exists k. reflexivity.
48
+ - intros k. rewrite Hg3, Hf3. reflexivity.
49
+ Qed .
50
+
21
51
Section Net.
22
52
Variable I:DirectedSet.
23
53
Variable X:TopologicalSpace.
You can’t perform that action at this time.
0 commit comments