-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbolic_state_eval_facts.v
916 lines (799 loc) · 45.9 KB
/
symbolic_state_eval_facts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
Require Import Arith.
Require Import Nat.
Require Import Bool.
Require Import bbv.Word.
Require Import Coq.NArith.NArith.
Require Import List.
Import ListNotations.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import FORVES2.constants.
Import Constants.
Require Import FORVES2.program.
Import Program.
Require Import FORVES2.execution_state.
Import ExecutionState.
Require Import FORVES2.stack_operation_instructions.
Import StackOpInstrs.
Require Import FORVES2.misc.
Import Misc.
Require Import FORVES2.symbolic_state.
Import SymbolicState.
Require Import FORVES2.valid_symbolic_state.
Import ValidSymbolicState.
Require Import FORVES2.symbolic_state_eval.
Import SymbolicStateEval.
Require Import FORVES2.eval_common.
Import EvalCommon.
Require Import FORVES2.constraints.
Import Constraints.
Module SymbolicStateEvalFacts.
Lemma n_Sm_neq_lt:
forall n m,
n < S m -> n <> m -> n < m.
Proof.
intros.
apply Nat.lt_succ_r in H.
apply Nat.lt_eq_cases in H.
destruct H; try intuition.
Qed.
Lemma valid_sstack_value_FreshVar:
forall key idx,
idx<key -> valid_sstack_value key (FreshVar idx).
Proof.
intros.
simpl.
apply H.
Qed.
Lemma eval_sstack_val'_succ:
forall d sv model mem strg exts maxidx sb ops,
valid_sstack_value maxidx sv ->
valid_bindings maxidx sb ops ->
d > maxidx ->
exists v,
eval_sstack_val' d sv model mem strg exts maxidx sb ops = Some v.
Proof.
induction d as [|d' IHd'].
- intros sv model mem strg exts maxidx sb ops H_valid_sv H_valid_sb H_d_S_maxid.
apply Nat.nlt_0_r in H_d_S_maxid.
contradiction.
- intros sv model mem strg exts maxidx sb ops H_valid_sv H_valid_sb H_d_S_maxid.
unfold eval_sstack_val'. fold eval_sstack_val'.
pose proof (follow_in_smap_suc sb sv maxidx ops H_valid_sv H_valid_sb) as H_follow.
destruct H_follow as [smv [maxidx' [sb' H_follow]]].
destruct H_follow as [H_follow_1 H_follow_2].
pose proof (valid_follow_in_smap sb sv maxidx ops smv maxidx' sb' H_valid_sv H_valid_sb H_follow_1) as H_follow_valid.
destruct H_follow_valid as [H_follow_valid_0 [H_follow_valid_1 H_follow_valid_2]].
rewrite H_follow_1.
destruct smv as [sv' | v | label args | soffset smem | skey sstrg | soffset ssize smem ] eqn:E_smv.
(* SymBasicVal *)
** destruct sv' as [val | var | idx' ] eqn:E_sv'.
*** exists val. reflexivity.
*** simpl in H_follow_valid_0.
exists (model var).
reflexivity.
*** discriminate H_follow_2.
(* SymPUSHTAG *)
** exists (get_tags_exts exts v val). reflexivity.
(* OpImp nargs f *)
** destruct (ops label) eqn:E_f.
unfold valid_bindings in H_valid_sb. fold valid_bindings in H_valid_sb.
simpl in H_follow_valid_0.
unfold valid_stack_op_instr in H_follow_valid_0.
rewrite E_f in H_follow_valid_0.
destruct H_follow_valid_0 as [H_follow_valid_0_0 H_follow_valid_0_1].
apply Nat.eqb_eq in H_follow_valid_0_0 as H_follow_valid_0_0_eqb.
rewrite H_follow_valid_0_0_eqb.
fold eval_sstack_val'.
assert(H_eval_args: forall args0,
valid_sstack maxidx' args0 ->
exists v, map_option (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx' sb' ops) args0 = Some v).
(* proof of assert *)
*** induction args0 as [|a args0' IHargs'].
**** intros. exists []. reflexivity.
**** intro H_valid_args0.
unfold valid_sstack in H_valid_args0. fold valid_sstack in H_valid_args0.
destruct H_valid_args0 as [H_valid_a H_valid_args0].
unfold map_option.
rewrite <- map_option_ho.
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' a model mem strg exts maxidx' sb' ops H_valid_a H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [v IHd'_0].
rewrite IHd'_0.
pose proof IHargs' H_valid_args0 as IHargs'_0.
destruct IHargs'_0 as [vargs0' IHargs'_0].
rewrite IHargs'_0.
exists (v :: vargs0').
reflexivity.
(* end proof of assert *)
*** pose proof (H_eval_args args H_follow_valid_0_1) as H_eval_args.
destruct H_eval_args as [v H_eval_args].
rewrite H_eval_args.
exists (f exts v).
reflexivity.
(* SymMLOAD *)
** unfold valid_smap_value in H_follow_valid_0.
destruct H_follow_valid_0 as [H_valid_sb_1_0 H_valid_sb_1_1].
assert(H_map_o_smem:
forall smem0,
valid_smemory maxidx' smem0 ->
exists v,
map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv0 : sstack_val => eval_sstack_val' d' sv0 model mem strg exts maxidx' sb' ops)) smem0 = Some v).
(* proof of assert *)
*** induction smem0 as [|u smem0' IHsmem0'].
**** intros. simpl. exists []. reflexivity.
**** intro H_valid_smemory.
unfold map_option.
rewrite <- map_option_ho.
unfold eval_common.EvalCommon.instantiate_memory_update at 1.
destruct u as [soffset' svalue'|soffset' svalue'].
***** unfold valid_smemory in H_valid_smemory. fold valid_smemory in H_valid_smemory.
destruct H_valid_smemory as [H_valid_smemory_0 H_valid_smemory_1].
unfold valid_smemory_update in H_valid_smemory_0.
destruct H_valid_smemory_0 as [H_valid_smemory_0_0 H_valid_smemory_0_1].
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' soffset' model mem strg exts maxidx' sb' ops H_valid_smemory_0_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
pose proof (IHd' svalue' model mem strg exts maxidx' sb' ops H_valid_smemory_0_1 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_1.
destruct IHd'_1 as [vvalue IHd'_1].
rewrite IHd'_1.
pose proof (IHsmem0' H_valid_smemory_1) as IHsmem0'_0.
destruct IHsmem0'_0 as [vsmem0' IHsmem0'_0].
rewrite IHsmem0'_0.
exists (U_MSTORE EVMWord voffset vvalue :: vsmem0').
reflexivity.
***** unfold valid_smemory in H_valid_smemory. fold valid_smemory in H_valid_smemory.
destruct H_valid_smemory as [H_valid_smemory_0 H_valid_smemory_1].
unfold valid_smemory_update in H_valid_smemory_0.
destruct H_valid_smemory_0 as [H_valid_smemory_0_0 H_valid_smemory_0_1].
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' soffset' model mem strg exts maxidx' sb' ops H_valid_smemory_0_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
pose proof (IHd' svalue' model mem strg exts maxidx' sb' ops H_valid_smemory_0_1 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_1.
destruct IHd'_1 as [vvalue IHd'_1].
rewrite IHd'_1.
pose proof (IHsmem0' H_valid_smemory_1) as IHsmem0'_0.
destruct IHsmem0'_0 as [vsmem0' IHsmem0'_0].
rewrite IHsmem0'_0.
exists (U_MSTORE8 EVMWord voffset vvalue :: vsmem0').
reflexivity.
(* end proof of assert *)
*** pose proof (H_map_o_smem smem H_valid_sb_1_1) as H_map_o_smem_0.
destruct H_map_o_smem_0 as [v H_map_o_smem_0].
rewrite H_map_o_smem_0.
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' soffset model mem strg exts maxidx' sb' ops H_valid_sb_1_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
exists (concrete_interpreter.ConcreteInterpreter.mload (eval_common.EvalCommon.update_memory mem v) voffset).
reflexivity.
(* SymSLOAD *)
** unfold valid_smap_value in H_follow_valid_0.
destruct H_follow_valid_0 as [H_valid_sb_1_0 H_valid_sb_1_1].
assert(H_map_o_sstrg:
forall sstrg0,
valid_sstorage maxidx' sstrg0 ->
exists v,
map_option (eval_common.EvalCommon.instantiate_storage_update (fun sv0 : sstack_val => eval_sstack_val' d' sv0 model mem strg exts maxidx' sb' ops)) sstrg0 = Some v).
(* proof of assert *)
*** induction sstrg0 as [|u sstrg0' IHsstrg0'].
**** intros. simpl. exists []. reflexivity.
**** intro H_valid_sstorage.
unfold map_option.
rewrite <- map_option_ho.
unfold eval_common.EvalCommon.instantiate_storage_update at 1.
destruct u as [skey' svalue'].
unfold valid_sstorage in H_valid_sstorage. fold valid_sstorage in H_valid_sstorage.
destruct H_valid_sstorage as [H_valid_sstorage_0 H_valid_sstorage_1].
unfold valid_sstorage_update in H_valid_sstorage_0.
destruct H_valid_sstorage_0 as [H_valid_sstorage_0_0 H_valid_sstorage_0_1].
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' skey' model mem strg exts maxidx' sb' ops H_valid_sstorage_0_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
pose proof (IHd' svalue' model mem strg exts maxidx' sb' ops H_valid_sstorage_0_1 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_1.
destruct IHd'_1 as [vvalue IHd'_1].
rewrite IHd'_1.
pose proof (IHsstrg0' H_valid_sstorage_1) as IHsstrg0'_0.
destruct IHsstrg0'_0 as [vsstrg0' IHsstrg0'_0].
rewrite IHsstrg0'_0.
exists (U_SSTORE EVMWord voffset vvalue :: vsstrg0').
reflexivity.
(* end proof of assert *)
*** pose proof (H_map_o_sstrg sstrg H_valid_sb_1_1) as H_map_o_sstrg_0.
destruct H_map_o_sstrg_0 as [v H_map_o_sstrg_0].
rewrite H_map_o_sstrg_0.
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' skey model mem strg exts maxidx' sb' ops H_valid_sb_1_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [vkey IHd'_0].
rewrite IHd'_0.
exists (concrete_interpreter.ConcreteInterpreter.sload (eval_common.EvalCommon.update_storage strg v) vkey).
reflexivity.
(* SymSHA3 *)
** unfold valid_smap_value in H_follow_valid_0.
destruct H_follow_valid_0 as [H_valid_sb_1_0 [H_valid_sb_1_1 H_valid_sb_1_2]].
assert(H_map_o_smem:
forall smem0,
valid_smemory maxidx' smem0 ->
exists v,
map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv0 : sstack_val => eval_sstack_val' d' sv0 model mem strg exts maxidx' sb' ops)) smem0 = Some v).
(* proof of assert *)
*** induction smem0 as [|u smem0' IHsmem0'].
**** intros. simpl. exists []. reflexivity.
**** intro H_valid_smemory.
unfold map_option.
rewrite <- map_option_ho.
unfold eval_common.EvalCommon.instantiate_memory_update at 1.
destruct u as [soffset' svalue'|soffset' svalue'].
***** unfold valid_smemory in H_valid_smemory. fold valid_smemory in H_valid_smemory.
destruct H_valid_smemory as [H_valid_smemory_0 H_valid_smemory_1].
unfold valid_smemory_update in H_valid_smemory_0.
destruct H_valid_smemory_0 as [H_valid_smemory_0_0 H_valid_smemory_0_1].
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' soffset' model mem strg exts maxidx' sb' ops H_valid_smemory_0_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
pose proof (IHd' svalue' model mem strg exts maxidx' sb' ops H_valid_smemory_0_1 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_1.
destruct IHd'_1 as [vvalue IHd'_1].
rewrite IHd'_1.
pose proof (IHsmem0' H_valid_smemory_1) as IHsmem0'_0.
destruct IHsmem0'_0 as [vsmem0' IHsmem0'_0].
rewrite IHsmem0'_0.
exists (U_MSTORE EVMWord voffset vvalue :: vsmem0').
reflexivity.
***** unfold valid_smemory in H_valid_smemory. fold valid_smemory in H_valid_smemory.
destruct H_valid_smemory as [H_valid_smemory_0 H_valid_smemory_1].
unfold valid_smemory_update in H_valid_smemory_0.
destruct H_valid_smemory_0 as [H_valid_smemory_0_0 H_valid_smemory_0_1].
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' soffset' model mem strg exts maxidx' sb' ops H_valid_smemory_0_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
pose proof (IHd' svalue' model mem strg exts maxidx' sb' ops H_valid_smemory_0_1 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_1.
destruct IHd'_1 as [vvalue IHd'_1].
rewrite IHd'_1.
pose proof (IHsmem0' H_valid_smemory_1) as IHsmem0'_0.
destruct IHsmem0'_0 as [vsmem0' IHsmem0'_0].
rewrite IHsmem0'_0.
exists (U_MSTORE8 EVMWord voffset vvalue :: vsmem0').
reflexivity.
(* end proof of assert *)
*** pose proof (H_map_o_smem smem H_valid_sb_1_2) as H_map_o_smem_0.
destruct H_map_o_smem_0 as [v H_map_o_smem_0].
rewrite H_map_o_smem_0.
assert (H_d'_gt_maxidx': d' > maxidx'). intuition.
pose proof (IHd' soffset model mem strg exts maxidx' sb' ops H_valid_sb_1_0 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_0.
destruct IHd'_0 as [voffset IHd'_0].
rewrite IHd'_0.
pose proof (IHd' ssize model mem strg exts maxidx' sb' ops H_valid_sb_1_1 H_follow_valid_1 H_d'_gt_maxidx') as IHd'_1.
destruct IHd'_1 as [vsize IHd'_1].
rewrite IHd'_1.
exists (get_sha3_info_op (get_keccak256_exts exts) (wordToNat vsize) (concrete_interpreter.ConcreteInterpreter.mload' (update_memory mem v) voffset (wordToNat vsize))).
reflexivity.
Qed.
Lemma eval_sstack_val_succ:
forall sb sv model mem strg exts maxidx ops,
valid_sstack_value maxidx sv ->
valid_bindings maxidx sb ops ->
exists v,
eval_sstack_val sv model mem strg exts maxidx sb ops = Some v.
Proof.
intros sb sv model mem strg exts maxidx ops H_valid_sv H_valid_sb.
unfold eval_sstack_val.
assert (H_S_maxidx_gt_maxidx: S maxidx > maxidx ). auto.
pose proof (eval_sstack_val'_succ (S maxidx) sv model mem strg exts maxidx sb ops H_valid_sv H_valid_sb H_S_maxidx_gt_maxidx) as H_eval_sstack_val'_succ.
destruct H_eval_sstack_val'_succ as [v H_eval_sstack_val'_succ].
exists v.
apply H_eval_sstack_val'_succ.
Qed.
Lemma eval_map_o_sstk_succ:
forall maxidx sb model mem strg exts ops sstk,
valid_sstack maxidx sstk ->
valid_bindings maxidx sb ops ->
exists l,
map_option (fun sv => eval_sstack_val sv model mem strg exts maxidx sb ops) sstk = Some l.
Proof.
intros maxidx sb model mem strg exts ops.
induction sstk as [|sv sstk' IHsstk'].
- intros. simpl. exists []. reflexivity.
- intros H_valid_sstk H_valid_sb.
simpl in H_valid_sstk.
destruct H_valid_sstk as [H_valid_sstk_0 H_valid_sstk_1].
unfold map_option.
rewrite <- map_option_ho.
(* apply inudction hypothesis *)
pose proof (IHsstk' H_valid_sstk_1 H_valid_sb) as IHsstk'_0.
destruct IHsstk'_0 as [l IHsstk'_0].
rewrite IHsstk'_0.
pose proof (eval_sstack_val_succ sb sv model mem strg exts maxidx ops H_valid_sstk_0 H_valid_sb) as H_eval_sstack_val_succ_sv.
destruct H_eval_sstack_val_succ_sv as [v H_eval_sstack_val_succ_sv].
rewrite H_eval_sstack_val_succ_sv.
exists (v :: l).
reflexivity.
Qed.
Lemma eval_sstack_succ:
forall maxidx sb model mem strg exts ops sstk,
valid_sstack maxidx sstk ->
valid_bindings maxidx sb ops ->
exists l,
eval_sstack sstk maxidx sb model mem strg exts ops = Some l.
Proof.
intros maxidx sb model mem strg exts ops sstk H_valid_sstk H_valid_sb.
unfold eval_sstack.
pose proof (eval_map_o_sstk_succ maxidx sb model mem strg exts ops sstk H_valid_sstk H_valid_sb) as H_eval_map_o_sstack_val_succ.
apply H_eval_map_o_sstack_val_succ.
Qed.
Lemma eval_map_o_smem_succ:
forall maxidx sb model mem strg exts ops smem,
valid_smemory maxidx smem ->
valid_bindings maxidx sb ops ->
exists mem',
map_option
(eval_common.EvalCommon.instantiate_memory_update
(fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) smem = Some mem'.
Proof.
intros maxidx sb model mem strg exts ops.
induction smem as [|u smem' IHsmem'].
- intros. simpl. exists []. reflexivity.
- intros H_valid_smem H_valid_sb.
simpl in H_valid_smem.
destruct H_valid_smem as [H_valid_smem_0 H_valid_smem_1].
unfold map_option.
rewrite <- map_option_ho.
(* apply inudction hypothesis *)
pose proof (IHsmem' H_valid_smem_1 H_valid_sb) as IHsmem'_0.
destruct IHsmem'_0 as [l IHsmem'_0].
rewrite IHsmem'_0.
destruct u as [soffset svalue | soffset svalue].
+ simpl.
simpl in H_valid_smem_0.
destruct H_valid_smem_0 as [H_valid_smem_0_1 H_valid_smem_0_2].
pose proof (eval_sstack_val_succ sb soffset model mem strg exts maxidx ops H_valid_smem_0_1 H_valid_sb) as H_eval_sstack_val_succ_soffset.
destruct H_eval_sstack_val_succ_soffset as [vsoffset H_eval_sstack_val_succ_soffset].
rewrite H_eval_sstack_val_succ_soffset.
pose proof (eval_sstack_val_succ sb svalue model mem strg exts maxidx ops H_valid_smem_0_2 H_valid_sb) as H_eval_sstack_val_succ_svalue.
destruct H_eval_sstack_val_succ_svalue as [vsvalue H_eval_sstack_val_succ_svalue].
rewrite H_eval_sstack_val_succ_svalue.
exists (U_MSTORE EVMWord vsoffset vsvalue :: l).
reflexivity.
+ simpl.
simpl in H_valid_smem_0.
destruct H_valid_smem_0 as [H_valid_smem_0_1 H_valid_smem_0_2].
pose proof (eval_sstack_val_succ sb soffset model mem strg exts maxidx ops H_valid_smem_0_1 H_valid_sb) as H_eval_sstack_val_succ_soffset.
destruct H_eval_sstack_val_succ_soffset as [vsoffset H_eval_sstack_val_succ_soffset].
rewrite H_eval_sstack_val_succ_soffset.
pose proof (eval_sstack_val_succ sb svalue model mem strg exts maxidx ops H_valid_smem_0_2 H_valid_sb) as H_eval_sstack_val_succ_svalue.
destruct H_eval_sstack_val_succ_svalue as [vsvalue H_eval_sstack_val_succ_svalue].
rewrite H_eval_sstack_val_succ_svalue.
exists (U_MSTORE8 EVMWord vsoffset vsvalue :: l).
reflexivity.
Qed.
Lemma eval_smemory_succ:
forall maxidx sb model mem strg exts ops smem,
valid_smemory maxidx smem ->
valid_bindings maxidx sb ops ->
exists mem',
eval_smemory smem maxidx sb model mem strg exts ops = Some mem'.
Proof.
intros maxidx sb model mem strg exts ops smem H_valid_smem H_valid_sb.
unfold eval_smemory.
pose proof (eval_map_o_smem_succ maxidx sb model mem strg exts ops smem H_valid_smem H_valid_sb) as H_eval_map_o_smem_val_succ.
destruct H_eval_map_o_smem_val_succ as [umem' H_eval_map_o_smem_val_succ].
rewrite H_eval_map_o_smem_val_succ.
exists (eval_common.EvalCommon.update_memory mem umem').
reflexivity.
Qed.
Lemma eval_map_o_sstrg_succ:
forall maxidx sb model mem strg exts ops sstrg,
valid_sstorage maxidx sstrg ->
valid_bindings maxidx sb ops ->
exists strg',
map_option
(eval_common.EvalCommon.instantiate_storage_update
(fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg = Some strg'.
Proof.
intros maxidx sb model mem strg exts ops.
induction sstrg as [|u sstrg' IHsstrg'].
- intros. simpl. exists []. reflexivity.
- intros H_valid_sstrg H_valid_sb.
simpl in H_valid_sstrg.
destruct H_valid_sstrg as [H_valid_sstrg_0 H_valid_sstrg_1].
unfold map_option.
rewrite <- map_option_ho.
(* apply inudction hypothesis *)
pose proof (IHsstrg' H_valid_sstrg_1 H_valid_sb) as IHsstrg'_0.
destruct IHsstrg'_0 as [l IHsstrg'_0].
rewrite IHsstrg'_0.
destruct u as [skey svalue].
simpl.
simpl in H_valid_sstrg_0.
destruct H_valid_sstrg_0 as [H_valid_sstrg_0_1 H_valid_sstrg_0_2].
pose proof (eval_sstack_val_succ sb skey model mem strg exts maxidx ops H_valid_sstrg_0_1 H_valid_sb) as H_eval_sstack_val_succ_skey.
destruct H_eval_sstack_val_succ_skey as [vskey H_eval_sstack_val_succ_skey].
rewrite H_eval_sstack_val_succ_skey.
pose proof (eval_sstack_val_succ sb svalue model mem strg exts maxidx ops H_valid_sstrg_0_2 H_valid_sb) as H_eval_sstack_val_succ_svalue.
destruct H_eval_sstack_val_succ_svalue as [vsvalue H_eval_sstack_val_succ_svalue].
rewrite H_eval_sstack_val_succ_svalue.
exists (U_SSTORE EVMWord vskey vsvalue :: l).
reflexivity.
Qed.
Lemma eval_sstorage_succ:
forall maxidx sb model mem strg exts ops sstrg,
valid_sstorage maxidx sstrg ->
valid_bindings maxidx sb ops ->
exists sstrg',
eval_sstorage sstrg maxidx sb model mem strg exts ops = Some sstrg'.
Proof.
intros maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_sb.
unfold eval_sstorage.
pose proof (eval_map_o_sstrg_succ maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_sb) as H_eval_map_o_sstrg_val_succ.
destruct H_eval_map_o_sstrg_val_succ as [ustrg' H_eval_map_o_sstrg_val_succ].
rewrite H_eval_map_o_sstrg_val_succ.
exists (eval_common.EvalCommon.update_storage strg ustrg').
reflexivity.
Qed.
Lemma eval_sstate_succ:
forall sst model mem strg exts ops,
valid_sstate sst ops ->
exists st',
eval_sstate sst model mem strg exts ops = Some st'.
Proof.
intros sst model mem strg exts ops H_valid_sstate.
unfold valid_sstate in H_valid_sstate.
destruct H_valid_sstate as [H_valid_smap [H_valid_sstk [H_valid_smem H_valid_sstrg]]].
unfold eval_sstate.
(* apply Nat.eqb_eq in H_instk_height as H_instk_height_eq. *)
(* rewrite H_instk_height_eq. *)
unfold valid_smap in H_valid_smap.
(*destruct H_valid_smap as [_ [_ H_valid_sb]].*)
pose proof (eval_sstack_succ (get_maxidx_smap (get_smap_sst sst)) (get_bindings_smap (get_smap_sst sst)) model mem strg exts ops (get_stack_sst sst) H_valid_sstk H_valid_smap) as H_eval_sstack_succ.
destruct H_eval_sstack_succ as [l H_eval_sstack_succ].
rewrite H_eval_sstack_succ.
pose proof (eval_smemory_succ (get_maxidx_smap (get_smap_sst sst)) (get_bindings_smap (get_smap_sst sst)) model mem strg exts ops (get_memory_sst sst) H_valid_smem H_valid_smap) as H_eval_smemory_succ.
destruct H_eval_smemory_succ as [mem' H_eval_smemory_succ].
rewrite H_eval_smemory_succ.
pose proof (eval_sstorage_succ (get_maxidx_smap (get_smap_sst sst)) (get_bindings_smap (get_smap_sst sst)) model mem strg exts ops (get_storage_sst sst) H_valid_sstrg H_valid_smap) as H_eval_sstorage_succ.
destruct H_eval_sstorage_succ as [strg' H_eval_sstorage_succ].
rewrite H_eval_sstorage_succ.
exists (make_st l mem' strg' exts).
reflexivity.
Qed.
Lemma eval_sstack_val'_preserved_when_depth_extended:
forall d maxidx sb sv v model mem strg exts ops,
eval_sstack_val' d sv model mem strg exts maxidx sb ops = Some v ->
eval_sstack_val' (S d) sv model mem strg exts maxidx sb ops = Some v.
Proof.
induction d as [|d' IHd'].
- discriminate.
- intros maxidx sb sv v model mem strg exts ops H_eval_sstack_val'_d.
assert(H_mapo:
forall args maxidx sb l,
(map_option (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx sb ops) args) = Some l ->
(map_option (fun sv' : sstack_val => eval_sstack_val' (S d') sv' model mem strg exts maxidx sb ops) args) = Some l).
(* proof of assert *)
+ induction args as [|a args' IHargs'].
* intuition.
* intros maxidx0 sb0 l H_mapo.
simpl in H_mapo.
destruct (eval_sstack_val' d' a model mem strg exts maxidx0 sb0 ops) eqn:E_eval_sstack_val'; try discriminate.
destruct (map_option (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx0 sb0 ops) args') eqn:E_mapo'; try discriminate.
pose proof (IHargs' maxidx0 sb0 l0 E_mapo') as IHargs'_0.
pose proof (IHd' maxidx0 sb0 a e model mem strg exts ops E_eval_sstack_val') as IHd'_0.
unfold map_option.
rewrite <- map_option_ho.
rewrite IHd'_0.
rewrite IHargs'_0.
apply H_mapo.
(* end proof of assert *)
+ remember (S d') as dd.
rewrite Heqdd in H_eval_sstack_val'_d.
simpl.
simpl in H_eval_sstack_val'_d.
destruct (follow_in_smap sv maxidx sb) as [x|] eqn:E_follow; try discriminate.
destruct x eqn:E_x; try reflexivity.
destruct smv eqn:E_smv.
* apply H_eval_sstack_val'_d.
* apply H_eval_sstack_val'_d.
* destruct (ops label) eqn:E_label.
destruct (length args =? n) eqn:E_len; try discriminate.
destruct (map_option (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts key sb0 ops) args) eqn:E_mapo; try discriminate.
pose proof (H_mapo args key sb0 l E_mapo) as E_mapo_0.
rewrite E_mapo_0.
apply H_eval_sstack_val'_d.
* assert(H_mapo_mem :
forall args maxidx sb l,
(map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx sb ops)) args) = Some l ->
(map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' (S d') sv' model mem strg exts maxidx sb ops)) args) = Some l).
(* proof of assert *)
** induction args as [|a args' IHargs'].
*** intuition.
*** intros maxidx0 sb1 l H_mapo_mem.
simpl in H_mapo_mem.
unfold eval_common.EvalCommon.instantiate_memory_update in H_mapo_mem at 1.
destruct a eqn:E_a.
**** destruct (eval_sstack_val' d' offset0 model mem strg exts maxidx0 sb1 ops) eqn:E_offset0; try discriminate.
destruct (eval_sstack_val' d' value model mem strg exts maxidx0 sb1 ops) eqn:E_value; try discriminate.
destruct (map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx0 sb1 ops)) args') eqn:E_mapo_args'; try discriminate.
pose proof (IHd' maxidx0 sb1 offset0 e model mem strg exts ops E_offset0) as IHd'_0.
pose proof (IHd' maxidx0 sb1 value e0 model mem strg exts ops E_value) as IHd'_1.
pose proof (IHargs' maxidx0 sb1 l0 E_mapo_args') as IHargs'_0.
rewrite <- Heqdd.
simpl.
rewrite IHd'_0.
rewrite IHd'_1.
rewrite Heqdd.
rewrite IHargs'_0.
apply H_mapo_mem.
**** destruct (eval_sstack_val' d' offset0 model mem strg exts maxidx0 sb1 ops) eqn:E_offset0; try discriminate.
destruct (eval_sstack_val' d' value model mem strg exts maxidx0 sb1 ops) eqn:E_value; try discriminate.
destruct (map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx0 sb1 ops)) args') eqn:E_mapo_args'; try discriminate.
pose proof (IHd' maxidx0 sb1 offset0 e model mem strg exts ops E_offset0) as IHd'_0.
pose proof (IHd' maxidx0 sb1 value e0 model mem strg exts ops E_value) as IHd'_1.
pose proof (IHargs' maxidx0 sb1 l0 E_mapo_args') as IHargs'_0.
rewrite <- Heqdd.
simpl.
rewrite IHd'_0.
rewrite IHd'_1.
rewrite Heqdd.
rewrite IHargs'_0.
apply H_mapo_mem.
(* end proof of assert *)
** destruct (map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv : sstack_val => eval_sstack_val' d' sv model mem strg exts key sb0 ops)) smem) eqn:E_mapo_smem; try discriminate.
pose proof (H_mapo_mem smem key sb0 l E_mapo_smem) as H_mapo_mem_0.
rewrite Heqdd.
rewrite H_mapo_mem_0.
destruct (eval_sstack_val' d' offset model mem strg exts key sb0 ops) eqn:E_eval_sstack_val'_offset; try discriminate.
pose proof (IHd' key sb0 offset e model mem strg exts ops E_eval_sstack_val'_offset) as IHd'_0.
rewrite <- Heqdd.
rewrite IHd'_0.
apply H_eval_sstack_val'_d.
* assert(H_mapo_strg :
forall args maxidx sb l,
(map_option (eval_common.EvalCommon.instantiate_storage_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx sb ops)) args) = Some l ->
(map_option (eval_common.EvalCommon.instantiate_storage_update (fun sv' : sstack_val => eval_sstack_val' (S d') sv' model mem strg exts maxidx sb ops)) args) = Some l).
(* proof of assert *)
** induction args as [|a args' IHargs'].
*** intuition.
*** intros maxidx0 sb1 l H_mapo_strg.
simpl in H_mapo_strg.
unfold eval_common.EvalCommon.instantiate_storage_update in H_mapo_strg at 1.
destruct a eqn:E_a.
destruct (eval_sstack_val' d' key1 model mem strg exts maxidx0 sb1 ops) eqn:E_key1; try discriminate.
destruct (eval_sstack_val' d' value model mem strg exts maxidx0 sb1 ops) eqn:E_value; try discriminate.
destruct (map_option (eval_common.EvalCommon.instantiate_storage_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx0 sb1 ops)) args') eqn:E_mapo_args'; try discriminate.
pose proof (IHd' maxidx0 sb1 key1 e model mem strg exts ops E_key1) as IHd'_0.
pose proof (IHd' maxidx0 sb1 value e0 model mem strg exts ops E_value) as IHd'_1.
pose proof (IHargs' maxidx0 sb1 l0 E_mapo_args') as IHargs'_0.
rewrite <- Heqdd.
simpl.
rewrite IHd'_0.
rewrite IHd'_1.
rewrite Heqdd.
rewrite IHargs'_0.
apply H_mapo_strg.
(* end proof of assert *)
** destruct (map_option (eval_common.EvalCommon.instantiate_storage_update (fun sv : sstack_val => eval_sstack_val' d' sv model mem strg exts key sb0 ops)) sstrg) eqn:E_mapo_sstrg; try discriminate.
pose proof (H_mapo_strg sstrg key sb0 l E_mapo_sstrg) as H_mapo_strg_0.
rewrite Heqdd.
rewrite H_mapo_strg_0.
destruct (eval_sstack_val' d' key0 model mem strg exts key sb0 ops) eqn:E_eval_sstack_val'_offset; try discriminate.
pose proof (IHd' key sb0 key0 e model mem strg exts ops E_eval_sstack_val'_offset) as IHd'_0.
rewrite <- Heqdd.
rewrite IHd'_0.
apply H_eval_sstack_val'_d.
* assert(H_mapo_mem :
forall args maxidx sb l,
(map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx sb ops)) args) = Some l ->
(map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' (S d') sv' model mem strg exts maxidx sb ops)) args) = Some l).
(* proof of assert *)
** induction args as [|a args' IHargs'].
*** intuition.
*** intros maxidx0 sb1 l H_mapo_mem.
simpl in H_mapo_mem.
unfold eval_common.EvalCommon.instantiate_memory_update in H_mapo_mem at 1.
destruct a eqn:E_a.
**** destruct (eval_sstack_val' d' offset0 model mem strg exts maxidx0 sb1 ops) eqn:E_offset0; try discriminate.
destruct (eval_sstack_val' d' value model mem strg exts maxidx0 sb1 ops) eqn:E_value; try discriminate.
destruct (map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx0 sb1 ops)) args') eqn:E_mapo_args'; try discriminate.
pose proof (IHd' maxidx0 sb1 offset0 e model mem strg exts ops E_offset0) as IHd'_0.
pose proof (IHd' maxidx0 sb1 value e0 model mem strg exts ops E_value) as IHd'_1.
pose proof (IHargs' maxidx0 sb1 l0 E_mapo_args') as IHargs'_0.
rewrite <- Heqdd.
simpl.
rewrite IHd'_0.
rewrite IHd'_1.
rewrite Heqdd.
rewrite IHargs'_0.
apply H_mapo_mem.
**** destruct (eval_sstack_val' d' offset0 model mem strg exts maxidx0 sb1 ops) eqn:E_offset0; try discriminate.
destruct (eval_sstack_val' d' value model mem strg exts maxidx0 sb1 ops) eqn:E_value; try discriminate.
destruct (map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv' : sstack_val => eval_sstack_val' d' sv' model mem strg exts maxidx0 sb1 ops)) args') eqn:E_mapo_args'; try discriminate.
pose proof (IHd' maxidx0 sb1 offset0 e model mem strg exts ops E_offset0) as IHd'_0.
pose proof (IHd' maxidx0 sb1 value e0 model mem strg exts ops E_value) as IHd'_1.
pose proof (IHargs' maxidx0 sb1 l0 E_mapo_args') as IHargs'_0.
rewrite <- Heqdd.
simpl.
rewrite IHd'_0.
rewrite IHd'_1.
rewrite Heqdd.
rewrite IHargs'_0.
apply H_mapo_mem.
(* end proof of assert *)
** destruct (map_option (eval_common.EvalCommon.instantiate_memory_update (fun sv : sstack_val => eval_sstack_val' d' sv model mem strg exts key sb0 ops)) smem) eqn:E_mapo_smem; try discriminate.
destruct (eval_sstack_val' d' offset model mem strg exts key sb0 ops) eqn:E_eval_offset; try discriminate.
destruct (eval_sstack_val' d' size model mem strg exts key sb0 ops) eqn:E_eval_size; try discriminate.
pose proof (H_mapo_mem smem key sb0 l E_mapo_smem) as E_mapo_0.
pose proof (IHd' key sb0 offset e model mem strg exts ops E_eval_offset) as IHd'_0.
pose proof (IHd' key sb0 size e0 model mem strg exts ops E_eval_size) as IHd'_1.
rewrite IHd'_0.
rewrite IHd'_1.
rewrite Heqdd.
rewrite E_mapo_0.
apply H_eval_sstack_val'_d.
Qed.
Lemma eval_sstack_val'_preserved_when_depth_extended_by_i:
forall i d maxidx sb sv v model mem strg exts ops,
eval_sstack_val' d sv model mem strg exts maxidx sb ops = Some v ->
eval_sstack_val' (d+i) sv model mem strg exts maxidx sb ops = Some v.
Proof.
induction i as [|i' IHi'].
- intros. rewrite Nat.add_0_r. apply H.
- intros d maxidx sb sv v model mem strg exts ops H_eval_d.
+ pose proof (IHi' d maxidx sb sv v model mem strg exts ops H_eval_d) as IHi'_0.
rewrite Nat.add_succ_r.
apply eval_sstack_val'_preserved_when_depth_extended.
apply IHi'_0.
Qed.
Lemma a_lt_b_a_plus_i_eq_b:
forall a b,
a <= b -> a+(b-a) = b.
Proof.
intuition.
Qed.
Lemma eval_sstack_val'_preserved_when_depth_extended_le:
forall d1 d2 maxidx sb sv v model mem strg exts ops,
d1 <= d2 ->
eval_sstack_val' d1 sv model mem strg exts maxidx sb ops = Some v ->
eval_sstack_val' d2 sv model mem strg exts maxidx sb ops = Some v.
Proof.
intros d1 d2 maxidx sb sv v model mem strg exts ops H_d1_le_d2 H_eval_d1.
apply a_lt_b_a_plus_i_eq_b in H_d1_le_d2.
rewrite <- H_d1_le_d2.
apply eval_sstack_val'_preserved_when_depth_extended_by_i.
apply H_eval_d1.
Qed.
Lemma eval_sstack_val'_preserved_when_depth_extended_lt:
forall d1 d2 maxidx sb sv v model mem strg exts ops,
d1 < d2 ->
eval_sstack_val' d1 sv model mem strg exts maxidx sb ops = Some v ->
eval_sstack_val' d2 sv model mem strg exts maxidx sb ops = Some v.
Proof.
intros.
apply eval_sstack_val'_preserved_when_depth_extended_le with (d1:=d1); intuition.
Qed.
Lemma instantiate_memory_update_preserved_when_depth_ext_le:
forall d1 d2 model mem strg exts maxidx sb ops u u',
d1 <= d2 ->
EvalCommon.instantiate_memory_update
(fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) u = Some u' ->
EvalCommon.instantiate_memory_update
(fun sv : sstack_val => eval_sstack_val' d2 sv model mem strg exts maxidx sb ops) u = Some u'.
Proof.
intros d1 d2 model mem strg exts maxidx sb ops u u' H_d1_le_d2 H_mem_u.
destruct u as [soffset svalue|soffset svalue].
- simpl.
simpl in H_mem_u.
destruct (eval_sstack_val' d1 soffset model mem strg exts maxidx sb ops) as [offset|] eqn:E_eval_soffset; try discriminate.
destruct (eval_sstack_val' d1 svalue model mem strg exts maxidx sb ops) as [value|] eqn:E_eval_svalue; try discriminate.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb soffset offset model mem strg exts ops H_d1_le_d2 E_eval_soffset) as E_eval_soffset_d2.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb svalue value model mem strg exts ops H_d1_le_d2 E_eval_svalue) as E_eval_svalue_d2.
rewrite E_eval_soffset_d2.
rewrite E_eval_svalue_d2.
rewrite <- H_mem_u.
reflexivity.
- simpl.
simpl in H_mem_u.
destruct (eval_sstack_val' d1 soffset model mem strg exts maxidx sb ops) as [offset|] eqn:E_eval_soffset; try discriminate.
destruct (eval_sstack_val' d1 svalue model mem strg exts maxidx sb ops) as [value|] eqn:E_eval_svalue; try discriminate.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb soffset offset model mem strg exts ops H_d1_le_d2 E_eval_soffset) as E_eval_soffset_d2.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb svalue value model mem strg exts ops H_d1_le_d2 E_eval_svalue) as E_eval_svalue_d2.
rewrite E_eval_soffset_d2.
rewrite E_eval_svalue_d2.
rewrite <- H_mem_u.
reflexivity.
Qed.
Lemma instantiate_memory_update_mapo_preserved_when_depth_ext_le:
forall smem d1 d2 model mem strg exts maxidx sb ops updates,
d1 <= d2 ->
map_option (EvalCommon.instantiate_memory_update (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops)) smem = Some updates ->
map_option (EvalCommon.instantiate_memory_update (fun sv : sstack_val => eval_sstack_val' d2 sv model mem strg exts maxidx sb ops)) smem = Some updates.
Proof.
induction smem as [|u smem' IHsmem'].
- intros d1 d2 model mem strg exts maxidx sb ops updates H_d1_le_d2 H_mapo.
simpl.
simpl in H_mapo.
rewrite <- H_mapo.
reflexivity.
- intros d1 d2 model mem strg exts maxidx sb ops updates H_d1_le_d2 H_mapo.
simpl in H_mapo.
destruct (EvalCommon.instantiate_memory_update (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) u) as [elem_value|] eqn:E_inst_mem_up; try discriminate.
destruct (map_option (EvalCommon.instantiate_memory_update (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops)) smem') as [rs_val|] eqn:E_inst_mapo; try discriminate.
pose proof (instantiate_memory_update_preserved_when_depth_ext_le d1 d2 model mem strg exts maxidx sb ops u elem_value H_d1_le_d2 E_inst_mem_up) as E_inst_mem_up_d2.
pose proof (IHsmem' d1 d2 model mem strg exts maxidx sb ops rs_val H_d1_le_d2 E_inst_mapo) as E_inst_mapo_d2.
simpl.
rewrite E_inst_mem_up_d2.
rewrite E_inst_mapo_d2.
rewrite <- H_mapo.
reflexivity.
Qed.
Lemma instantiate_sotrage_update_preserved_when_depth_ext_le:
forall d1 d2 model mem strg exts maxidx sb ops u u',
d1 <= d2 ->
EvalCommon.instantiate_storage_update
(fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) u = Some u' ->
EvalCommon.instantiate_storage_update
(fun sv : sstack_val => eval_sstack_val' d2 sv model mem strg exts maxidx sb ops) u = Some u'.
Proof.
intros d1 d2 model mem strg exts maxidx sb ops u u' H_d1_le_d2 H_strg_u.
destruct u as [skey svalue].
simpl.
simpl in H_strg_u.
destruct (eval_sstack_val' d1 skey model mem strg exts maxidx sb ops) as [key|] eqn:E_eval_skey; try discriminate.
destruct (eval_sstack_val' d1 svalue model mem strg exts maxidx sb ops) as [value|] eqn:E_eval_svalue; try discriminate.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb skey key model mem strg exts ops H_d1_le_d2 E_eval_skey) as E_eval_skey_d2.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb svalue value model mem strg exts ops H_d1_le_d2 E_eval_svalue) as E_eval_svalue_d2.
rewrite E_eval_skey_d2.
rewrite E_eval_svalue_d2.
rewrite <- H_strg_u.
reflexivity.
Qed.
Lemma instantiate_storage_update_mapo_preserved_when_depth_ext_le:
forall sstrg d1 d2 model mem strg exts maxidx sb ops updates,
d1 <= d2 ->
map_option (EvalCommon.instantiate_storage_update (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops)) sstrg = Some updates ->
map_option (EvalCommon.instantiate_storage_update (fun sv : sstack_val => eval_sstack_val' d2 sv model mem strg exts maxidx sb ops)) sstrg = Some updates.
Proof.
induction sstrg as [|u sstrg' IHsstrg'].
- intros d1 d2 model mem strg exts maxidx sb ops updates H_d1_le_d2 H_mapo.
simpl.
simpl in H_mapo.
rewrite <- H_mapo.
reflexivity.
- intros d1 d2 model mem strg exts maxidx sb ops updates H_d1_le_d2 H_mapo.
simpl in H_mapo.
destruct (EvalCommon.instantiate_storage_update (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) u) as [elem_value|] eqn:E_inst_strg_up; try discriminate.
destruct (map_option (EvalCommon.instantiate_storage_update (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops)) sstrg') as [rs_val|] eqn:E_inst_mapo; try discriminate.
pose proof (instantiate_sotrage_update_preserved_when_depth_ext_le d1 d2 model mem strg exts maxidx sb ops u elem_value H_d1_le_d2 E_inst_strg_up) as E_inst_strg_up_d2.
pose proof (IHsstrg' d1 d2 model mem strg exts maxidx sb ops rs_val H_d1_le_d2 E_inst_mapo) as E_inst_mapo_d2.
simpl.
rewrite E_inst_strg_up_d2.
rewrite E_inst_mapo_d2.
rewrite <- H_mapo.
reflexivity.
Qed.
Lemma eval_sstack_val'_mapo_preserved_when_depth_ext_le:
forall sstk d1 d2 model mem strg exts maxidx sb ops stk',
d1 <= d2 ->
map_option (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) sstk = Some stk' ->
map_option (fun sv : sstack_val => eval_sstack_val' d2 sv model mem strg exts maxidx sb ops) sstk = Some stk'.
Proof.
induction sstk as [|sv sstk' IHsstk'].
- intros d1 d2 model mem strg exts maxidx sb ops stk' H_d1_le_d2 H_mapo.
simpl.
simpl in H_mapo.
rewrite <- H_mapo.
reflexivity.
- intros d1 d2 model mem strg exts maxidx sb ops stk' H_d1_le_d2 H_mapo.
simpl in H_mapo.
destruct (eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) as [elem_val|] eqn:E_eval_sstack; try discriminate.
destruct (map_option (fun sv : sstack_val => eval_sstack_val' d1 sv model mem strg exts maxidx sb ops) sstk') as [rs_val|] eqn:E_inst_mapo; try discriminate.
pose proof (eval_sstack_val'_preserved_when_depth_extended_le d1 d2 maxidx sb sv elem_val model mem strg exts ops H_d1_le_d2 E_eval_sstack) as H_eval_sstack_val'_d2.
pose proof (IHsstk' d1 d2 model mem strg exts maxidx sb ops rs_val H_d1_le_d2 E_inst_mapo) as E_inst_mapo_d2.
simpl.
rewrite H_eval_sstack_val'_d2.
rewrite E_inst_mapo_d2.
rewrite <- H_mapo.
reflexivity.
Qed.
End SymbolicStateEvalFacts.