-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
219 lines (176 loc) · 7.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from precision_eval import CriterionLoss, CorrectClass, TimeGain_vs_OptLoss, CountEpsError, SafeBound, PreciseBound, RegInfo, ROC
from training import training
from datasets_db import load_dataset, get_data_manipulators
from misc import calc_dist, import_string
import torch
import sys
import argparse
from pathlib import Path
import math
#
def calculate_class_weight(dataset):
_, label_b, _ = get_data_manipulators(dataset)
dist = calc_dist(dataset, get_class_f_for_balancing=label_b)
dist = torch.tensor(dist,dtype=torch.float)
dist = dist.sum()/dist
weight = dist/dist.sum()
return weight
def create_loss_function(dataset,args):
tag = args.lossfunction
if tag == 'mse':
loss_f = torch.nn.MSELoss(reduction='mean')
elif tag == 'l1':
loss_f = torch.nn.L1Loss(reduction='mean')
elif tag == 'cross_entropy':
loss_f =torch.nn.CrossEntropyLoss()
elif tag == 'cross_entropy_w':
weight = calculate_class_weight(dataset)
print(f'Cross entropy weights: {weight}')
loss_f =torch.nn.CrossEntropyLoss(weight=weight)
else:
raise Exception(f'Invalid loss function: {tag}')
return loss_f
def create_optimizer(model, args):
tag = args.optimizer
lr = args.learningrate
if tag == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
elif tag == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
else:
raise Exception(f'Invalid optimizer: {tag}')
return optimizer
def save_model(model,filename):
torch.save( model, Path(__file__).parent.joinpath(Path(filename)).resolve() )
# regression with pyg graphs
#
def train(args):
# for some reason multithreading slows down everything
if args.numthreads is not None:
torch.set_num_threads(args.numthreads)
torch.set_num_interop_threads(args.numthreads)
# data set and test set, they should be defined in dataset_db.py
dataset_id=args.dataset
testset_id=args.testset
# create the data set if needed
if dataset_id is not None:
dataset = load_dataset(dataset_id)
else:
dataset = None
# create the test set if needed
if testset_id is not None:
testset = load_dataset(testset_id)
else:
testset = None
# Create or load the model
#
if args.loadmodel is not None:
print(f'Loading model: {args.loadmodel}')
model = torch.load(args.loadmodel)
criterion = create_loss_function(dataset if dataset is not None else testset,args)
optimizer = create_optimizer(model, args)
else:
print(f'Creating model: {args.model}')
model_class = import_string(args.model)
print(args)
model = model_class(dataset,args)
criterion = create_loss_function(dataset,args)
optimizer = create_optimizer(model, args)
print()
print(f'Model: {model}')
print()
print(f'Loss function: {criterion}')
print()
print(f'Optimizer: {optimizer}')
print()
if args.learningtype == 'regression':
if args.to_int == 'round':
to_int = round
elif args.to_int == 'ceil':
to_int = math.ceil
else:
to_int = math.floor
precision_evals = [CriterionLoss(),CountEpsError(eps=1),SafeBound(to_int=to_int), PreciseBound(to_int=to_int)]
else:
p = args.prop_threshold
precision_evals = [CriterionLoss(),CorrectClass(p=p), TimeGain_vs_OptLoss(opt_key=args.opt_keyword,p=p),ROC(opt_key=args.opt_keyword)]
label, label_b, batch_t = get_data_manipulators(dataset if dataset is not None else testset)
training(model=model,
criterion=criterion,
optimizer=optimizer,
dataset=dataset,
testset=testset,
get_label_f=label,
get_class_f_for_balancing=label_b,
batch_transformer=batch_t,
balance_train_set=False,
balance_validation_set=False,
balance_testset=False,
epochs=args.epochs,
precision_evals=precision_evals,
regression=args.learningtype == 'regression',
save_models = args.savemodels,
save_improved_only = args.saveimprovedonly,
sim_train=args.sim_train,
out_path = args.outputpath)
# save the last model
if dataset_id is not None and args.outfilename is not None:
save_model(model,args.outfilename)
def main():
cmd = ' '.join(sys.argv)
print(f'Command line: {cmd}')
print()
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--epochs', type=int, default=1)
parser.add_argument('-ds', '--dataset', type=int)
parser.add_argument('-ts', '--testset', type=int)
parser.add_argument('-of', '--outfilename', type=str) # kept for backwards comparability, should be remove at some point
parser.add_argument('-op', '--outputpath', type=str, default='/tmp')
parser.add_argument('-sm', '--savemodels', type=str, choices=['all','last'], default=None)
parser.add_argument('-sio', '--saveimprovedonly', action='store_true')
parser.add_argument('-lm', '--loadmodel', type=str)
parser.add_argument('-lr', '--learningrate', type=float, default=1e-3)
parser.add_argument('-lf', '--lossfunction', type=str, choices=['mse','cross_entropy','cross_entropy_w'], default='mse')
parser.add_argument('-opt', '--optimizer', type=str, default='adam')
parser.add_argument('-hc', '--hiddenchannels', type=int, default=128)
parser.add_argument('-lt', '--learningtype', type=str, default='regression')
parser.add_argument('-m', '--model', type=str, default='nn_models.Model_1')
parser.add_argument('-ed', '--embeddingdim', type=int, default=None)
parser.add_argument('-to_int', '--to_int', type=str, choices=['round','ceil','floor'], default='round')
parser.add_argument('-pt', '--prop_threshold', type=float, default=None)
parser.add_argument('-dop', '--drop_out_p', type=float, default=0.5)
parser.add_argument('-rnn', '--rnn_class', type=str, choices=['lstm','gru'], default='lstm')
parser.add_argument('-nt', '--numthreads', type=int, default=None)
parser.add_argument('-opt_key', '--opt_keyword', type=str, choices=['saved_size','saved_gas'], default='saved_size')
parser.add_argument('-sim_t', '--sim_train', action='store_true')
parser.add_argument('-nl', '--layers', type=int, default=1)
args = parser.parse_args()
train(args)
# if args.datatype == 'pyg':
# if args.learningtype == 'reg':
# train_f = train_g_reg
# elif args.learningtype == 'cl':
# train_f = train_g
# else:
# raise Exception(f'Invalid value for learningtype: {args.learningtype}')
# elif args.datatype == 'seq':
# if args.learningtype == 'reg':
# train_f = train_s_reg
# elif args.learningtype == 'cl':
# train_f = train_s
# else:
# raise Exception(f'Invalid value for learningtype: {args.learningtype}')
# else:
# raise Exception(f'Invalid value for datatype: {args.datatype}')
# train_f(epochs=args.epochs,
# dataset_id=args.dataset,
# testset_id=args.testset,
# loadmodel=args.loadmodel,
# loss_f_tag=args.lossfunction,
# optimizer_tag=args.optimizer,
# lr=args.learningrate,
# outfilename=args.outfilename)
if __name__ == "__main__":
torch.manual_seed(56783)
# torch.manual_seed(12930873561324785612)
main()