-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathtest-frame-prediction-on-ucf-rec_gdl.lua
284 lines (247 loc) · 9.47 KB
/
test-frame-prediction-on-ucf-rec_gdl.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
--[[
July 2016
Authors: Michael Mathieu, Camille Couprie
Script to test 2 trained models to predict future frames in video from 4
previous ones on a subset of the UCF101 test dataset.
--]]
require('torch')
require('nngraph')
require('image')
--require('fbtorch')
require('gfx.js')
require('cunn')
require('cudnn')
paths.dofile('upsample.lua')
paths.dofile('expand.lua')
--dofile('ucf101.lua')
torch.manualSeed(1)
torch.setnumthreads(4)
iscuda = false
assert(loadfile("image_error_measures.lua"))(iscuda)
opt_default = {
full = false, -- display previous frames and target, otherwise the prediction
with_pyr = true,
with_delta = true,
with_cuda = true,
network_dir = 'AdvGDL',
delay_gif = 25,
totalNbiters=1,
nChannels= 3,
margin = 5, --for display
nOutputFrames = 1,
nOutputFramesRec = 2,
interv = 1,
flow_im_used=true
}
op = op or {}
for k, v in pairs(opt_default) do
if op[k] == nil then
op[k] = v
end
end
local inputH, inputW = 240, 320
local netsize = 64
opt = {batchsize = 1}
-- loading trained network
local flow_pth = 'UCF101frm10p/'
local predloaded
if op.network_dir=='Adv' then
predloaded = torch.load('trained_models/new_adv_big_64_smalladv.t7')
elseif op.network_dir=='AdvGDL' then
predloaded = torch.load('trained_models/new_adv_big_gdl_64.t7')
end
local opt = predloaded.opt
local model = predloaded.model
opt.nOutputFrames = 1
opt.batchsize = 1
------------------------------------------------------------------------------
-- init multiscale model with dsnet
local dsnet = nn.ConcatTable()
dsnet:add(nn.SpatialAveragePooling(8,8,8,8))
dsnet:add(nn.SpatialAveragePooling(4,4,4,4))
dsnet:add(nn.SpatialAveragePooling(2,2,2,2))
dsnet:add(nn.SpatialAveragePooling(1,1,1,1))
dsnet:cuda()
local dsnetInput = dsnet
local dsnetTarget = dsnet:clone()
--------------------------------------------------------------------------------
-- network size adaptation for models fine-tuned on larger patchs
for i = 1, #model.modules do
if torch.type(model.modules[i]) == 'nn.ExpandDim' then
local xH = math.floor(math.sqrt(model.modules[i].k) /netsize * inputH + 0.5)
local xW = math.floor(math.sqrt(model.modules[i].k) /netsize * inputW + 0.5)
model.modules[i].k = xH*xW
end
if torch.type(model.modules[i]) == 'nn.View' then
if model.modules[i].numInputDims == 2 then
local s1 = model.modules[i].size[1]
local s2 = math.floor(model.modules[i].size[2] /netsize * inputH + 0.5)
local s3 = math.floor(model.modules[i].size[3] /netsize * inputW + 0.5)
model.modules[i].size = torch.LongStorage{s1, s2, s3}
model.modules[i].numElements = s1*s2*s3
--print(model.modules.size)
end
end
end
local delta = {torch.CudaTensor(opt.batchsize, 2):zero(),
torch.CudaTensor(opt.batchsize, 4):zero(),
torch.CudaTensor(opt.batchsize, 6):zero(),
torch.CudaTensor(opt.batchsize, 8):zero()}
------------------------------------------------------------------------------
function display_frames(my_array,nbframes)
local inter = torch.Tensor(op.nChannels,my_array:size(2),op.margin):fill(1)
local todisp = torch.Tensor(op.nChannels,my_array:size(2),op.margin):fill(1)
local todisp2 = torch.Tensor(nbframes,op.nChannels,my_array:size(2),
my_array:size(3))
for i = 1, nbframes do
for j = 1, op.nChannels do
todisp2[i][j]= my_array[(i-1)*3+j]
end
todisp = torch.cat(todisp, todisp2[i], 3)
todisp = torch.cat(todisp, inter, 3)
end
gfx.image(todisp)
end
function save_frames(prediction, nbframes, filename)
for i = 1, opt.nInputFrames do
prediction[i]:add(1):div(2)
image.save(filename..'/pred_'..i..'.png',prediction[i])
end
local new_img = torch.Tensor(op.nChannels,inputH, inputW):fill(0)
new_img[1]:fill(1)
for i = opt.nInputFrames+1, opt.nInputFrames+op.nOutputFramesRec do
prediction[i]:add(1):div(2)
new_img[{{},{3,inputH-2},{3,inputW-2}}]=
prediction[i][{{},{3,inputH-2},{3,inputW-2}}]
image.save(filename..'/pred_'..i..'.png',new_img)
end
end
------------------------------------------------------------------------------
-- Main job
local sum_PSNR=torch.Tensor(op.nOutputFramesRec):fill(0)
local sum_err_sharp2=torch.Tensor(op.nOutputFramesRec):fill(0)
local sum_SSIM=torch.Tensor(op.nOutputFramesRec):fill(0)
local nbimagestosave = op.nOutputFramesRec+opt.nInputFrames
local array_to_save= torch.Tensor(nbimagestosave,op.nChannels,inputH,inputW)
local target_to_save =
torch.Tensor(op.nOutputFramesRec,op.nChannels,inputH,inputW)
local input, output, target
local batch=1
local nbvideos = 3783
local nbframes, nbpartvid
local nbvid = torch.Tensor(op.nOutputFramesRec):fill(0)
local index =
torch.range(1,(opt.nInputFrames+op.nOutputFramesRec)*op.interv, op.interv)
for videoidx = 1,nbvideos,10 do
--local vid, label --= datasets[set]:nextTestImage(videoidx)
local vid =
torch.Tensor(opt.nInputFrames+ op.nOutputFramesRec, op.nChannels, 240,320)
for fr=1,opt.nInputFrames do
im_name = flow_pth..videoidx..'/pred_'..fr..'.png'
vid[fr] = (image.load(im_name))
end
for fr = 1,op.nOutputFramesRec do
im_name = flow_pth..videoidx..'/target_'..fr..'.png'
vid[fr+opt.nInputFrames] = (image.load(im_name))
end
vid:mul(2):add(-1)
nbframes = vid:size(1)
nbpartvid = torch.abs(nbframes/opt.nInputFrames)
local filename_out = op.network_dir..'/'..videoidx
for ii = 1,op.nOutputFramesRec do
-- extract the first frames
input = vid[{{1 , opt.nInputFrames}}]
for f=1,opt.nInputFrames-ii+1 do
input[f] = vid[index[ii+f-1]]
end
for j=1,ii-1 do
if j> opt.nInputFrames then break end
input[opt.nInputFrames+1-j] = array_to_save[ii-j+opt.nInputFrames]
end
target = torch.Tensor(op.nOutputFrames, op.nChannels, 240,320)
for f=1,op.nOutputFrames do
target[f] = vid[index[opt.nInputFrames+ii+f-1]]
end
input = input:view(1, op.nChannels*opt.nInputFrames,
input:size(3), input:size(4))
target = target:view(1, op.nChannels*opt.nOutputFrames,
target:size(3), target:size(4))
if op.with_pyr == true then
input = dsnetInput:forward(input:cuda())
target = dsnetTarget:forward(target:cuda())
end
if op.with_delta == true then
output = model:forward({input, delta})[1]
elseif op.with_pyr == false then
output = model:forward(input:cuda())
else
output = model:forward(input)
end
if op.with_pyr == true then
output = output[4] -- the largest scale output[1][4]
end
output = output:double()
if op.with_pyr == true then
input = input[4]
input = input[{{1},{},{},{}}]:float()
target = target[4]:double()
end
output = output[batch]
-- replace target and input in same space than the output
target = target[batch]
if ii==1 then
array_to_save[{{1,opt.nInputFrames}}]=input
end
array_to_save[opt.nInputFrames+ii]=output -- target
-- extract moving pixels for SNR computations
if op.flow_im_used then
local flow_im_name
local moutput = torch.Tensor(3,240,320):fill(-1)
local mtarget = torch.Tensor(3,240,320):fill(-1)
if ii==1 then
flow_im_name = flow_pth..videoidx..'/pred_4_flow.png'
else
flow_im_name = flow_pth..videoidx..'/target_'..(ii-1)..'_flow.png'
end
local flow_im = image.load(flow_im_name)
local s = output[{{1,3}}]:size()
for j=1, s[2] do
for k=1, s[3] do
if flow_im[1][j][k]< 0.2 or flow_im[2][j][k]< 0.2
or flow_im[3][j][k]< 0.2 then -- moving
for i=1,s[1] do
moutput[i][j][k] = output[i][j][k]
mtarget[i][j][k] = target[i][j][k]
end
end
end
end
local psnr = PSNR(moutput, mtarget)
if psnr < 50 then
sum_PSNR[ii] = sum_PSNR[ii]+psnr
sum_SSIM[ii] = sum_SSIM[ii]+SSIM(moutput, mtarget)
sum_err_sharp2[ii] = sum_err_sharp2[ii] +
computel1difference(moutput, mtarget)
nbvid[ii] = nbvid[ii]+1
end
else
sum_PSNR[ii] = sum_PSNR[ii]+PSNR(output[{{1,3}}], target[{{1,3}}])
sum_SSIM[ii] = sum_SSIM[ii]+SSIM(output[{{1,3}}], target[{{1,3}}])
sum_err_sharp2[ii] = sum_err_sharp2[ii] +
computel1difference(output[{{1,3}}], target[{{1,3}}])
nbvid[ii] = nbvid[ii]+1
end
end --for ii = 1,op.nOutputFramesRec
print(filename_out)
os.execute('mkdir -p "' .. filename_out .. '"; ')
save_frames(array_to_save, nbimagestosave, filename_out)
for i= 1,op.nOutputFramesRec do
print('******** video '..videoidx..', '..i..' th frame pred *************')
print(string.format("score sharp diff: %.2f",sum_err_sharp2[i]/nbvid[i]))
print(string.format("PSNR: %.2f",sum_PSNR[i]/nbvid[i]))
print(string.format("SSIM: %.2f",sum_SSIM[i]/nbvid[i]))
end
os.execute('convert $(for ((a=1; a<'..nbimagestosave..
'; a++)); do printf -- "-delay '..op.delay_gif..' '..filename_out..
'/pred_%s.png " $a; done;) '..filename_out..'result.gif')
end --for videoidx = 1,nbvideos,10