-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlmaamp.m
292 lines (225 loc) · 7.69 KB
/
lmaamp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
clear
close('all')
%%Rate media rate equations, quasi 2-level system
%for ASE see Pedersen, B., The design of erbium-doped fiber amplifiers. 1991, Journal of Lightwave Tech.
%-----plotting
% numPlots = 11;
%
% m = floor(sqrt(numPlots)); %rows of plots
% n = ceil(numPlots/m); %columns of plots
% p = 1; %current plotting position
%
% scrsz = get(0,'ScreenSize');
% f = figure('Position',[1 scrsz(4) 2*scrsz(3)/3 2*scrsz(4)/3], 'Visible', 'off');
%color parameters
nCol = 12;
pcol = [1 0 0];
sigcol = [1 0 1];
asefcol = [0 0 1];
asebcol = [0 1 1];
%-----
%constants
h = 6.62606957E-34; %J*s
c = 299792458; %m/s
%parameters
%crystal parameters
L = 2; %m fiber length
%N = 6.1815E25; %30.1*10^24; %number density of doopant atoms, #/m^3
abs_p = 5.10/(10/log(10));
%cross sections, from RP photonics file
s_ap = 3.04306E-24; %absorption pump, m^2
s_ep = 3.17025E-24; %emission pump, m^2
s_as = 0.04966E-24; %abs signal, m^2
s_es = 0.59601E-24; %emi signal, m^2
tau_se = 770E-6; %spontaneous emission lifetime, s, see Barnard 1994 j quant elec.
dCore = 30E-6; %core diameter (m)
dClad = 250E-6;
MFA = pi*(dCore/2)^2; %dopant mode field area, ~core size
Ap = pi*(dClad/2)^2;
As = pi*(dCore/2)^2;
Gp = MFA/Ap; %Pump overlap w
Gs = MFA/As; %signal overlap
N = (abs_p/s_ap)/Gp;
%wavelengths
l_p = 0.976E-6; %pump wavelength, m
l_s = 1.030E-6; %signal wavelength, m
v_p = c/l_p; %pump freq, Hz
v_s = c/l_s; %signal freq, Hz
%calculated constants (see notebook 1, page , or equation below)
b_p = (s_ap + s_ep)/(h*v_p);
b_s = (s_as + s_es)/(h*v_s);
a_p = s_ap/(h*v_p);
a_s = s_as/(h*v_s);
%With these defined contsants, rate equation looks like
%dn2/dt = a_p*I_p + a_s*I_s - n2*(b_p*I_p + b_s*I_s + 1/tau_se)
%%
%Position-dependent pump intensity
dz = 0.002; %spacial slice, 2mm
z = 0:dz:L;
P_pi = 5; %lowest pump power (W)
P_pf = 30; %highest pump power (W)
%s_ap = s_ap*(dCore/dClad)^2;
%s_ep = s_ep*(dCore/dClad)^2;
FSeed = 500E3; %in rep rate s^-1
ESeed = 1E-7; % in J
I_0p = (P_pi:P_pi:P_pf)/(pi*(dClad/2)^2); %Initial pump intensity, 10kW/cm^2 = 1E8 W/m^2 --> 1W 6um core diameter ~3.5E10W/m^2
I_0s = (ESeed*FSeed)/(pi*(dCore/2)^2); %total seed signal intensity
dv_ase = 53E-9*(v_s/l_s);
%DE's for light intensity
dI_p = @(z,I_p,n2) (-Gp*(s_ap*N*(1-n2) - s_ep*N*n2)).*I_p;
dI_sig = @(z,I_sig,n2) (-Gs*(s_as*N*(1-n2) - s_es*N*n2)).*I_sig;
dI_ase = @(z,I_ase, n2) (-Gs*(s_as*N*(1-n2) - s_es*N*n2)).*I_ase + 2*Gs*n2*h*v_s*N*s_es*dv_ase/As;
%note ASE has same DE, but z directions are different, this is implemented
%below
%Initialize parameters
I_p = zeros(length(I_0p),length(z)); %pump intensity
I_s = zeros(length(I_0p),length(z)); %combind signal intensity (signal, ase)
I_sig = zeros(length(I_0p),length(z)); %singal (of interest) intensity
I_asef = zeros(length(I_0p),length(z)); %forward ase intensity, also initial cond.
I_aseb = zeros(length(I_0p),length(z)); %forward ase intensity, also initial cond.
n_2 = zeros(length(I_0p),length(z)); %excited state population
dg = zeros(length(I_0p),length(z)); %gain contribution
g = zeros(length(I_0p),length(z)); %gain coefficient
G = zeros(length(I_0p),length(z)); %gain
a = 0; %loss coeff. not currently used
%initial Pump/Signal conditions
I_p(:,1) = I_0p;
I_sig(:,1) = I_0s;
%while-loop determinants
j = 0;
cGain = zeros(length(I_0p),1);
errG = 1;
err = [];
%Main loop
while j < 400 && abs(errG) > 1E-7
pGain = cGain;
%RK4 method
%single-pass propagation
for i = 1:length(z)
k = length(z) - i + 1;
I_s(:,i) = I_sig(:,i) + I_asef(:,i) + I_aseb(:,i);
n_2(:,i) = (a_p*I_p(:,i) + a_s*I_s(:,i))./(b_p*I_p(:,i) + b_s*I_s(:,i) + 1/tau_se);
if i<length(z)
%update I_p
k1 = dz*dI_p(z(i), I_p(:,i), n_2(:,i));
k2 = dz*dI_p(z(i) + dz/2, I_p(:,i) + k1/2, n_2(:,i));
k3 = dz*dI_p(z(i) + dz/2, I_p(:,i) + k2/2, n_2(:,i));
k4 = dz*dI_p(z(i) + dz, I_p(:,i) + k3, n_2(:,i));
I_p(:,i+1) = I_p(:,i) + (k1+2*k2+2*k3+k4)/6;
%update I_sig
k1 = dz*dI_sig(z(i), I_sig(:,i), n_2(:,i));
k2 = dz*dI_sig(z(i) + dz/2, I_sig(:,i) + k1/2, n_2(:,i));
k3 = dz*dI_sig(z(i) + dz/2, I_sig(:,i) + k2/2, n_2(:,i));
k4 = dz*dI_sig(z(i) + dz, I_sig(:,i) + k3, n_2(:,i));
I_sig(:,i+1) = I_sig(:,i) + (k1+2*k2+2*k3+k4)/6;
%update I_asef
k1 = dz*dI_ase(z(i), I_asef(:,i), n_2(:,i));
k2 = dz*dI_ase(z(i) + dz/2, I_asef(:,i) + k1/2, n_2(:,i));
k3 = dz*dI_ase(z(i) + dz/2, I_asef(:,i) + k2/2, n_2(:,i));
k4 = dz*dI_ase(z(i) + dz, I_asef(:,i) + k3, n_2(:,i));
I_asef(:,i+1) = I_asef(:,i) + (k1+2*k2+2*k3+k4)/6;
%update I_aseb
k1 = dz*dI_ase(z(k), I_aseb(:,k), n_2(:,k));
k2 = dz*dI_ase(z(k) + dz/2, I_aseb(:,k) + k1/2, n_2(:,k));
k3 = dz*dI_ase(z(k) + dz/2, I_aseb(:,k) + k2/2, n_2(:,k));
k4 = dz*dI_ase(z(k) + dz, I_aseb(:,k) + k3, n_2(:,k));
I_aseb(:,k-1) = I_aseb(:,k) + (k1+2*k2+2*k3+k4)/6;
end
%single-pass gain
g(:,i) = (s_es*N*n_2(:,i) - s_as*N*(1-n_2(:,i)));
dg(:,i) = g(:,i)*dz;
G(:,i) = exp(sum(dg(:,1:i),2));
cGain = G(:,end);
end
errG = max(abs((cGain - pGain)./cGain));
err = [err, errG];
j = j+1;
end
%display final loop count and err
display(['Dopant density: ', num2str(N), ' atoms/m^3']);
display(['Number of loops: ',num2str(j)]);
display(['Gain error: ', num2str(errG)]);
%%
%%
%Plotting
%-----plotting
numPlots = 5;
m = floor(sqrt(numPlots)); %rows of plots
n = ceil(numPlots/m); %columns of plots
p = 1; %current plotting position
scrsz = get(0,'ScreenSize');
f1 = figure('Position',[1 scrsz(4) 2*scrsz(3)/3 2*scrsz(4)/3], 'Visible', 'off');
figure(f1)
colors = hsv(length(I_0p));
set(gcf, 'Colormap', colors);
%Pump plot
subplot(m,n,p)
p=p+1;
set(gca, 'ColorOrder', colors);
hold on
plot(z, I_p*Ap)
title('Pump intensity')
xlabel('Position along fiber (m)')
ylabel('Pump Power (W)')
%annotation('textbox', [0.6,0.6,0.1,0.1],...
% 'String', ['I_0 = ' num2str(I_p(1)/(1E7)) ' kW/cm^2']);
hold off
%Signal plot
subplot(m,n,p)
p=p+1;
set(gca, 'ColorOrder', colors);
hold on
plot(z, I_sig*As)
title('Signal intensity')
xlabel('Position along fiber (m)')
ylabel('Signal Power (W)')
%annotation('textbox', [0.6,0.6,0.1,0.1],...
% 'String', ['I_0 = ' num2str(I_p(1)/(1E7)) ' kW/cm^2']);
hold off
%Signal plot
subplot(m,n,p)
p=p+1;
set(gca, 'ColorOrder', colors);
hold on
plot(z, I_asef*As, '-')
plot(z, I_aseb*As, '-.')
title('ASE Signal intensity')
xlabel('Position along fiber (m)')
ylabel('ASE Signal Power (W)')
%annotation('textbox', [0.6,0.6,0.1,0.1],...
% 'String', ['I_0 = ' num2str(I_p(1)/(1E7)) ' kW/cm^2']);
hold off
%Signal plot
subplot(m,n,p)
p=p+1;
set(gca, 'ColorOrder', colors);
hold on
plot(z, n_2)
title('Inversion')
xlabel('Position along fiber (m)')
ylabel('Upper state population')
%annotation('textbox', [0.6,0.6,0.1,0.1],...
% 'String', ['I_0 = ' num2str(I_p(1)/(1E7)) ' kW/cm^2']);
hold off
%Gain plot
subplot(m,n,p)
p=p+1;
set(gca, 'ColorOrder', colors);
hold on
plot(z, g)
title('Gain')
xlabel('Position along fiber (m)')
ylabel('Gain Coef')
%annotation('textbox', [0.6,0.6,0.1,0.1],...
% 'String', ['I_0 = ' num2str(I_p(1)/(1E7)) ' kW/cm^2']);
hold off
%
% %%
% %Analysis
%
% d = 6E-6;
% %P_t = (I_p(:,end) + I_sig(:,end) + I_asef(:,end) + I_aseb(:,end))*pi*(d/2)^2;
% P_0p = I_0p*pi*(d/2)^2;
%
% effPlot = figure('Name', 'Total Output Power');
% plot(P_0p,P_t)