-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsk.py
63 lines (44 loc) · 1.59 KB
/
sk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import netket as nk
import numpy as np
from netket.operator.spin import sigmax, sigmaz
from scipy.sparse.linalg import eigsh
def generate_symmetric_matrix(N, seed=1234):
# Generate random Gaussian numbers
np.random.seed(seed)
random_numbers = np.random.normal(0, np.sqrt(1 / N), size=(N, N))
# Make the matrix symmetric
symmetric_matrix = (random_numbers + random_numbers.T) / 2
return symmetric_matrix
def try_to_load(file_name):
import os
if os.path.exists(file_name):
eigvec = np.load(file_name)
print("# Loaded state from ", file_name)
return True, eigvec
else:
return False, None
def generate_state_sk(N, seed=1234):
hi = nk.hilbert.Spin(s=1 / 2, N=N)
filename = "sk_" + str(N) + "_" + str(seed) + ".npy"
found, eigvec = try_to_load(filename)
if found:
return hi.all_states(), eigvec
Gamma = -1
H = sum([Gamma * sigmax(hi, i) for i in range(N)])
V = generate_symmetric_matrix(N, seed=seed)
for i in range(N):
for j in range(i + 1, N, 1):
H += sigmaz(hi, i) * sigmaz(hi, j) * V[i, j]
sp_h = H.to_sparse()
eig_vals, eig_vecs = eigsh(sp_h, k=2, which="SA")
np.save(filename, eig_vecs[:, 0])
return hi.all_states(), eig_vecs[:, 0]
def generate_hamiltonian_sk(N, seed=1234):
hi = nk.hilbert.Spin(s=1 / 2, N=N)
Gamma = -1
H = sum([Gamma * sigmax(hi, i) for i in range(N)])
V = generate_symmetric_matrix(N, seed=seed)
for i in range(N):
for j in range(i + 1, N, 1):
H += sigmaz(hi, i) * sigmaz(hi, j) * V[i, j]
return hi, H