-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_model_helper.py
210 lines (146 loc) · 5.61 KB
/
test_model_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import unittest
import torch
from torchvision import datasets, transforms
import utility
import model_helper
import os
import json
data_dir = 'flowers'
testing_dir = 'testing'
gpu_epochs = 9
cpu_epochs = 5
category_names = 'cat_to_name.json'
hidden_units = 600
learning_rate = 0.001
test_image = 'flowers/test/28/image_05230.jpg'
correct_prediction_class = '28'
correct_prediction_category = 'stemless gentian'
num_workers = 4
num_cpu_threads = 16
top_k = 5
def train_test(tester, arch, enable_gpu):
pin_memory = enable_gpu
dataloaders, class_to_idx = model_helper.get_dataloders(data_dir,
enable_gpu,
num_workers,
pin_memory)
model, optimizer, criterion = model_helper.create_model(arch,
learning_rate,
hidden_units,
class_to_idx)
if enable_gpu:
model.cuda()
else:
torch.set_num_threads(num_cpu_threads)
epochs = gpu_epochs if enable_gpu else cpu_epochs
model_helper.train(model,
criterion,
optimizer,
epochs,
dataloaders['training'],
dataloaders['validation'],
enable_gpu)
checkpoint_dir = testing_dir + '/gpu' if enable_gpu else '/cpu'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint = checkpoint_dir + '/' + arch + '_checkpoint.pth'
model_helper.save_checkpoint(checkpoint,
model,
optimizer,
arch,
learning_rate,
hidden_units,
epochs)
def predict_test(tester, arch, enable_gpu):
checkpoint_dir = testing_dir + '/gpu' if enable_gpu else '/cpu'
checkpoint = checkpoint_dir + '/' + arch + '_checkpoint.pth'
model = model_helper.load_checkpoint(checkpoint)
if enable_gpu:
model.cuda()
probs, classes = model_helper.predict(
test_image, model, enable_gpu, top_k)
tester.assertEqual(len(classes), top_k, 'Incorrect number of results')
tester.assertEqual(
classes[0], correct_prediction_class, 'Incorrect prediction')
with open(category_names, 'r') as f:
cat_to_name = json.load(f)
tester.assertEqual(
cat_to_name[classes[0]], correct_prediction_category, 'Incorrect prediction')
class TrainingGpuTestCase(unittest.TestCase):
def test_densenet121(self):
train_test(self, 'densenet121', True)
def test_densenet161(self):
train_test(self, 'densenet161', True)
def test_densenet201(self):
train_test(self, 'densenet201', True)
def test_vgg13_bn(self):
train_test(self, 'vgg13_bn', True)
def test_vgg16_bn(self):
train_test(self, 'vgg16_bn', True)
def test_vgg19_bn(self):
train_test(self, 'vgg19_bn', True)
def test_resnet18(self):
train_test(self, 'resnet18', True)
def test_resnet34(self):
train_test(self, 'resnet34', True)
def test_resnet50(self):
train_test(self, 'resnet50', True)
class TrainingCpuTestCase(unittest.TestCase):
def test_densenet121(self):
train_test(self, 'densenet121', False)
def test_densenet161(self):
train_test(self, 'densenet161', False)
def test_densenet201(self):
train_test(self, 'densenet201', False)
def test_vgg13_bn(self):
train_test(self, 'vgg13_bn', False)
def test_vgg16_bn(self):
train_test(self, 'vgg16_bn', False)
def test_vgg19_bn(self):
train_test(self, 'vgg19_bn', False)
def test_resnet18(self):
train_test(self, 'resnet18', False)
def test_resnet34(self):
train_test(self, 'resnet34', False)
def test_resnet50(self):
train_test(self, 'resnet50', False)
class InferenceGpuTestCase(unittest.TestCase):
def test_densenet121(self):
predict_test(self, 'densenet121', True)
def test_densenet161(self):
predict_test(self, 'densenet161', True)
def test_densenet201(self):
predict_test(self, 'densenet201', True)
def test_vgg13(self):
predict_test(self, 'vgg13_bn', True)
def test_vgg16(self):
predict_test(self, 'vgg16_bn', True)
def test_vgg19(self):
predict_test(self, 'vgg19_bn', True)
def test_resnet18(self):
predict_test(self, 'resnet18', True)
def test_resnet34(self):
predict_test(self, 'resnet34', True)
def test_resnet50(self):
predict_test(self, 'resnet50', True)
class InferenceCpuTestCase(unittest.TestCase):
def test_densenet121(self):
predict_test(self, 'densenet121', False)
def test_densenet161(self):
predict_test(self, 'densenet161', False)
def test_densenet201(self):
predict_test(self, 'densenet201', False)
def test_vgg13(self):
predict_test(self, 'vgg13_bn', False)
def test_vgg16(self):
predict_test(self, 'vgg16_bn', False)
def test_vgg19(self):
predict_test(self, 'vgg19_bn', False)
def test_resnet18(self):
predict_test(self, 'resnet18', False)
def test_resnet34(self):
predict_test(self, 'resnet34', False)
def test_resnet50(self):
predict_test(self, 'resnet50', False)
if __name__ == '__main__':
unittest.main()